Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151222
Title: Disentangled variational auto-encoder for semi-supervised learning
Authors: Li, Yang
Pan, Quan
Wang, Suhang
Peng, Haiyun
Yang, Tao
Cambria, Erik
Keywords: Engineering::Computer science and engineering
Issue Date: 2019
Source: Li, Y., Pan, Q., Wang, S., Peng, H., Yang, T. & Cambria, E. (2019). Disentangled variational auto-encoder for semi-supervised learning. Information Sciences, 482, 73-85. https://dx.doi.org/10.1016/j.ins.2018.12.057
Journal: Information Sciences
Abstract: Semi-supervised learning is attracting increasing attention due to the fact that datasets of many domains lack enough labeled data. Variational Auto-Encoder (VAE), in particular, has demonstrated the benefits of semi-supervised learning. The majority of existing semi-supervised VAEs utilize a classifier to exploit label information, where the parameters of the classifier are introduced to the VAE. Given the limited labeled data, learning the parameters for the classifiers may not be an optimal solution for exploiting label information. Therefore, in this paper, we develop a novel approach for semi-supervised VAE without classifier. Specifically, we propose a new model called Semi-supervised Disentangled VAE (SDVAE), which encodes the input data into disentangled representation and non-interpretable representation, then the category information is directly utilized to regularize the disentangled representation via the equality constraint. To further enhance the feature learning ability of the proposed VAE, we incorporate reinforcement learning to relieve the lack of data. The dynamic framework is capable of dealing with both image and text data with its corresponding encoder and decoder networks. Extensive experiments on image and text datasets demonstrate the effectiveness of the proposed framework.
URI: https://hdl.handle.net/10356/151222
ISSN: 0020-0255
DOI: 10.1016/j.ins.2018.12.057
Rights: © 2019 Elsevier Inc. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Journal Articles

Page view(s)

47
Updated on Oct 18, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.