Please use this identifier to cite or link to this item:
Title: First-principles study on structural, electronic, and optical properties of inorganic ge-based halide perovskites
Authors: Jong, Un-Gi
Yu, Chol-Jun
Kye, Yun-Hyok
Choe, Yong-Guk
Hao, Wei
Li, Shuzhou
Keywords: Engineering::Materials
Issue Date: 2019
Source: Jong, U., Yu, C., Kye, Y., Choe, Y., Hao, W. & Li, S. (2019). First-principles study on structural, electronic, and optical properties of inorganic ge-based halide perovskites. Inorganic Chemistry, 58(7), 4134-4140.
Journal: Inorganic chemistry
Abstract: Using density functional theory calculations, we explore the structural, electronic, and optical properties of the inorganic Ge-based halide perovskites AGeX3 (A = Cs, Rb; X = I, Br, Cl) that can possibly be used as light absorbers. We calculate the lattice parameters of the rhombohedral unit cell with an R3m space group, frequency-dependent dielectric constants, photoabsorption coefficients, effective masses of charge carriers, exciton binding energies, and electronic band structures by use of PBEsol and HSE06 functionals with and without SOC effect. We also predict the absolute electronic energy levels with respect to the external vacuum level by using the (001) surfaces with AX and GeX2 terminations, demonstrating their strong dependence on the surface terminations. The calculated results are found to be in reasonable agreement with the available experimental data for the cases of CsGeX3, while for the cases of RbGeX3 they are predicted for the first time in this work. We reveal that replacement of Cs with Rb can offer reasonable flexibility in optoelectronic properties matching for solar cell design and optimization, while X anion exchange gives rise to large changes.
ISSN: 0020-1669
DOI: 10.1021/acs.inorgchem.8b03095
Rights: © 2019 American Chemical Society. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

Page view(s)

Updated on Oct 19, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.