Please use this identifier to cite or link to this item:
Title: Understanding high anisotropic magnetism by ultrathin shell layer formation for magnetically hard–soft core–shell nanostructures
Authors: Lee, Kwan
Lee, Sangyeob
Ahn, Byungmin
Keywords: Engineering::Materials
Issue Date: 2019
Source: Lee, K., Lee, S. & Ahn, B. (2019). Understanding high anisotropic magnetism by ultrathin shell layer formation for magnetically hard–soft core–shell nanostructures. Chemistry of Materials, 31(3), 728-736.
Journal: Chemistry of Materials
Abstract: Magnetic core–shell nanostructures offer a viable solution for tunable magnetism via nanoscale exchange interactions in a single-component unit. A typical synthetic approach for monodisperse bimagnetic ferrite core–shell nanostructures employs the seed-mediated growth method using the heating-up process. Understanding magnetic core–shell interface formation and their interactions is crucial; however, the magnetical persistence of the pristine core component during the heating-up process is unclear. Here, we elucidate the enhancement mechanism of magnetic anisotropy when the hard–soft core–shell nanostructures are formed with the ultrathin shell layer. The heating-up effect on the core component exhibits the coordination change of ligand chemisorption with surface metal ions, which leads to a substantial increase in surface anisotropy due to enhanced spin–orbit couplings. We further demonstrate that the selection of metal precursors and surfactants for additional shell layer formation is important. The kinetic of the shell formation rate by their thermolysis and atomic-scale surface etching by the surfactant led to the disordering of surface spins on the core parts. Our observations provide the underlying mechanism of high anisotropic magnetism while bimagnetic ferrite core–shell interface formation and the voyage of synthetic procedures for the additional shell layer are critical to an outcoming magnetism.
ISSN: 0897-4756
DOI: 10.1021/acs.chemmater.8b03591
Rights: © 2019 American Chemical Society. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

Page view(s)

Updated on Oct 18, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.