Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151343
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Zhenfengen_US
dc.contributor.authorSong, Jiajiaen_US
dc.contributor.authorDu, Yonghuaen_US
dc.contributor.authorXi, Shiboen_US
dc.contributor.authorDou, Shuoen_US
dc.contributor.authorNsanzimana, Jean Marie Vianneyen_US
dc.contributor.authorWang, Chengen_US
dc.contributor.authorXu, Jason Zhichuanen_US
dc.contributor.authorWang, Xinen_US
dc.date.accessioned2021-06-22T07:32:14Z-
dc.date.available2021-06-22T07:32:14Z-
dc.date.issued2019-
dc.identifier.citationHuang, Z., Song, J., Du, Y., Xi, S., Dou, S., Nsanzimana, J. M. V., Wang, C., Xu, J. Z. & Wang, X. (2019). Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nature Energy, 4(4), 329-338. https://dx.doi.org/10.1038/s41560-019-0355-9en_US
dc.identifier.issn2058-7546en_US
dc.identifier.other0000-0003-2655-045X-
dc.identifier.other0000-0002-2085-7090-
dc.identifier.other0000-0001-7746-5920-
dc.identifier.other0000-0003-2686-466X-
dc.identifier.urihttps://hdl.handle.net/10356/151343-
dc.description.abstractThe oxygen evolution reaction (OER) is a key process in electrochemical energy conversion devices. Understanding the origins of the lattice oxygen oxidation mechanism is crucial because OER catalysts operating via this mechanism could bypass certain limitations associated with those operating by the conventional adsorbate evolution mechanism. Transition metal oxyhydroxides are often considered to be the real catalytic species in a variety of OER catalysts and their low-dimensional layered structures readily allow direct formation of the O–O bond. Here, we incorporate catalytically inactive Zn2+ into CoOOH and suggest that the OER mechanism is dependent on the amount of Zn2+ in the catalyst. The inclusion of the Zn2+ ions gives rise to oxygen non-bonding states with different local configurations that depend on the quantity of Zn2+. We propose that the OER proceeds via the lattice oxygen oxidation mechanism pathway on the metal oxyhydroxides only if two neighbouring oxidized oxygens can hybridize their oxygen holes without sacrificing metal–oxygen hybridization significantly, finding that Zn0.2Co0.8OOH has the optimum activity.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relationM4020246en_US
dc.relationARC10/15en_US
dc.relation.ispartofNature Energyen_US
dc.rights© 2019 The Author(s), under exclusive licence to Springer Nature Limited. All rights reserved.en_US
dc.subjectEngineering::Chemical engineeringen_US
dc.titleChemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalystsen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.identifier.doi10.1038/s41560-019-0355-9-
dc.identifier.scopus2-s2.0-85063458192-
dc.identifier.issue4en_US
dc.identifier.volume4en_US
dc.identifier.spage329en_US
dc.identifier.epage338en_US
dc.subject.keywordsElectrocatalysisen_US
dc.subject.keywordsEnergy Storageen_US
dc.description.acknowledgementThe authors appreciate the support from the National Research Foundation, Prime Minister’s Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. We also acknowledge financial support from the academic research fund AcRF Tier 2 (M4020246, ARC10/15), Ministry of Education, Singapore.en_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:SCBE Journal Articles

Page view(s)

52
Updated on Oct 28, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.