Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151374
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPark, Soohyunen_US
dc.contributor.authorJackman, Joshua A.en_US
dc.contributor.authorXu, Xiaobinen_US
dc.contributor.authorWeiss, Paul S.en_US
dc.contributor.authorCho, Nam-Joonen_US
dc.date.accessioned2021-07-23T09:32:09Z-
dc.date.available2021-07-23T09:32:09Z-
dc.date.issued2019-
dc.identifier.citationPark, S., Jackman, J. A., Xu, X., Weiss, P. S. & Cho, N. (2019). Micropatterned viral membrane clusters for antiviral drug evaluation. ACS Applied Materials and Interfaces, 11(15), 13984-13990. https://dx.doi.org/10.1021/acsami.9b01724en_US
dc.identifier.issn1944-8244en_US
dc.identifier.other0000-0003-3261-7585-
dc.identifier.other0000-0002-1800-8102-
dc.identifier.other0000-0002-3479-0130-
dc.identifier.other0000-0001-5527-6248-
dc.identifier.other0000-0002-8692-8955-
dc.identifier.urihttps://hdl.handle.net/10356/151374-
dc.description.abstractThe function of biological nanoparticles, such as membrane-enveloped viral particles, is often enhanced when the particles form higher-order supramolecular assemblies. While there is intense interest in developing biomimetic platforms that recapitulate these collective properties, existing platforms are limited to mimicking individual virus particles. Here, we present a micropatterning strategy to print linker molecules selectively onto bioinert surfaces, thereby enabling controlled tethering of biomimetic viral particle clusters across defined geometric patterns. By controlling the linker concentration, it is possible to tune the density of tethered particles within clusters while enhancing the signal intensity of encapsulated fluorescent markers. Time-resolved tracking of pore formation and membrane lysis revealed that an antiviral peptide can disturb clusters of the membrane-enclosed particles akin to the targeting of individual viral particles. This platform is broadly useful for evaluating the performance of membrane-active antiviral drug candidates, whereas the micropatterning strategy can be applied to a wide range of biological nanoparticles and other macromolecular entities.en_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relationNRF-CRP10-2012-07en_US
dc.relationNRF2015NRF-POC0001-19en_US
dc.relation.ispartofACS Applied Materials and Interfacesen_US
dc.rights© 2019 American Chemical Society. All rights reserved.en_US
dc.subjectEngineering::Materialsen_US
dc.titleMicropatterned viral membrane clusters for antiviral drug evaluationen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen_US
dc.contributor.researchUCLAen_US
dc.identifier.doi10.1021/acsami.9b01724-
dc.identifier.pmid30855935-
dc.identifier.scopus2-s2.0-85064344936-
dc.identifier.issue15en_US
dc.identifier.volume11en_US
dc.identifier.spage13984en_US
dc.identifier.epage13990en_US
dc.subject.keywordsMicropatterningen_US
dc.subject.keywordsNanotechnologyen_US
dc.description.acknowledgementThis work was supported by the National Research Foundation of Singapore through a Competitive Research Programme grant (NRF-CRP10-2012-07) and a Proof-of-Concept grant (NRF2015NRF-POC0001-19). Additional support was provided by the Creative Materials Discovery Program through the National Research Foundation of Korea funded by the Ministry of Science, ICT and Future Planning (NRF-2016M3D1A1024098). The fabrication was supported by a (US) National Science Foundation Nanomanufacturing grant #CMMI-1636136.en_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:MSE Journal Articles

Page view(s)

67
Updated on Dec 1, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.