Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151391
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCao, Qiangen_US
dc.contributor.authorLü, Weimingen_US
dc.contributor.authorWang, Renshaw Xiaoen_US
dc.contributor.authorGuan, Xinweien_US
dc.contributor.authorWang, Lanen_US
dc.contributor.authorYan, Shishenen_US
dc.contributor.authorWu, Tomen_US
dc.contributor.authorWang, Xiaolinen_US
dc.date.accessioned2021-06-13T04:30:58Z-
dc.date.available2021-06-13T04:30:58Z-
dc.date.issued2020-
dc.identifier.citationCao, Q., Lü, W., Wang, R. X., Guan, X., Wang, L., Yan, S., Wu, T. & Wang, X. (2020). Nonvolatile multistates memories for high-density data storage. ACS Applied Materials and Interfaces, 12(38), 42449-42471. https://dx.doi.org/10.1021/acsami.0c10184en_US
dc.identifier.issn1944-8244en_US
dc.identifier.other0000-0003-4469-0659-
dc.identifier.other0000-0002-7327-9968-
dc.identifier.other0000-0003-0845-4827-
dc.identifier.other0000-0003-4150-0848-
dc.identifier.urihttps://hdl.handle.net/10356/151391-
dc.description.abstractIn the current information age, the realization of memory devices with energy efficient design, high storage density, nonvolatility, fast access, and low cost is still a great challenge. As a promising technology to meet these stringent requirements, nonvolatile multistates memory (NMSM) has attracted lots of attention over the past years. Owing to the capability to store data in more than a single bit (0 or 1), the storage density is dramatically enhanced without scaling down the memory cell, making memory devices more efficient and less expensive. Multistates in a single cell also provide an unconventional in-memory computing platform beyond the Von Neumann architecture and enable neuromorphic computing with low power consumption. In this review, an in-depth perspective is presented on the recent progress and challenges on the device architectures, material innovation, working mechanisms of various types of NMSMs, including flash, magnetic random-access memory (MRAM), resistive random-access memory (RRAM), ferroelectric random-access memory (FeRAM), and phase-change memory (PCM). The intriguing properties and performance of these NMSMs, which are the key to realizing highly integrated memory hierarchy, are discussed and compared.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.language.isoenen_US
dc.relation.ispartofACS Applied Materials and Interfacesen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials and Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.0c10184en_US
dc.subjectEngineering::Materialsen_US
dc.titleNonvolatile multistates memories for high-density data storageen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1021/acsami.0c10184-
dc.description.versionAccepted versionen_US
dc.identifier.pmid32812741-
dc.identifier.scopus2-s2.0-85091562543-
dc.identifier.issue38en_US
dc.identifier.volume12en_US
dc.identifier.spage42449en_US
dc.identifier.epage42471en_US
dc.subject.keywordsChemical Structureen_US
dc.subject.keywordsCircuitsen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
author A review2019-08-21.pdf1.27 MBAdobe PDFView/Open

Page view(s)

45
Updated on Oct 24, 2021

Download(s)

1
Updated on Oct 24, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.