Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151445
Title: Area, power and speed optimized early output majority voter for asynchronous TMR implementation
Authors: Balasubramanian, Padmanabhan
Mastorakis, Nikos E.
Keywords: Engineering::Computer science and engineering
Engineering::Electrical and electronic engineering
Issue Date: 2021
Source: Balasubramanian, P. & Mastorakis, N. E. (2021). Area, power and speed optimized early output majority voter for asynchronous TMR implementation. Electronics, 10(12), 1425:1-1425:12. https://dx.doi.org/10.3390/electronics10121425
Journal: Electronics 
Abstract: This paper presents a new, efficient asynchronous early output majority voter that can be used to effectively realize an asynchronous triple modular redundancy (TMR) implementation. For the input-output mode asynchronous realization, the dual-rail code was used for data encoding and four phase return-to-zero and return-to-one handshake schemes were separately used for data communication. The proposed majority voter requires 62.8% less area and dissipates 37% less power on average compared to the best of the existing asynchronous majority voters while considering both handshake schemes. Importantly, the reductions in area and power are achieved without sacrificing the speed. Example TMR implementations show that the proposed majority voter leads to simultaneous reductions in cycle time, silicon area, and power dissipation. As a result, the proposed majority voter enables improved optimization in figure-of-merits such as area–cycle time product, power–cycle time product, and area–cycle time–power product for TMR implementations utilizing it compared to TMR implementations incorporating other majority voters. The circuits were implemented using a 32/28-nm CMOS technology.
URI: https://hdl.handle.net/10356/151445
ISSN: 2079-9292
DOI: 10.3390/electronics10121425
Schools: School of Computer Science and Engineering 
Rights: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/ 4.0/).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Journal Articles

Files in This Item:
File Description SizeFormat 
electronics-10-01425.pdfPublished version3.37 MBAdobe PDFThumbnail
View/Open

Page view(s)

298
Updated on May 4, 2025

Download(s) 50

124
Updated on May 4, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.