Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151473
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShi, Yuzhien_US
dc.contributor.authorZhao, Haitaoen_US
dc.contributor.authorChin, Lip Keten_US
dc.contributor.authorZhang, Yien_US
dc.contributor.authorYap, Peng Huaten_US
dc.contributor.authorSer, Weeen_US
dc.contributor.authorQiu, Cheng-Weien_US
dc.contributor.authorLiu, Ai Qunen_US
dc.date.accessioned2021-06-18T06:49:56Z-
dc.date.available2021-06-18T06:49:56Z-
dc.date.issued2020-
dc.identifier.citationShi, Y., Zhao, H., Chin, L. K., Zhang, Y., Yap, P. H., Ser, W., Qiu, C. & Liu, A. Q. (2020). Optical potential-well array for high-selectivity, massive trapping and sorting at nanoscale. Nano Letters, 20(7), 5193-5200. https://dx.doi.org/10.1021/acs.nanolett.0c01464en_US
dc.identifier.issn1530-6984en_US
dc.identifier.other0000-0003-1624-7895-
dc.identifier.other0000-0002-6605-500X-
dc.identifier.other0000-0002-0126-5778-
dc.identifier.urihttps://hdl.handle.net/10356/151473-
dc.description.abstractOptical tweezers are versatile tools capable of sorting microparticles, yet formidable challenges are present in the separation of nanoparticles smaller than 200 nm. The difficulties arise from the controversy on the requirement of a tightly focused light spot in order to create strong optical forces while a large area is kept for the sorting. To overcome this problem, we create a near-field potential well array with connected tiny hotspots in a large scale. This situation can sort nanoparticles with sizes from 100 to 500 nm, based on the differentiated energy depths of each potential well. In this way, nanoparticles of 200, 300, and 500 nm can be selectively trapped in this microchannel by appropriately tuning the laser power. Our approach provides a robust and unprecedented recipe for optical trapping and separation of nanoparticles and biomolecules, such that it presents a huge potential in the physical and biomedical sciences.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relationNRFCRP13-2014-01en_US
dc.relationMOE2017-T3-1-001en_US
dc.relation.ispartofNano Lettersen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Nano Letters, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.nanolett.0c01464en_US
dc.subjectEngineering::Electrical and electronic engineeringen_US
dc.titleOptical potential-well array for high-selectivity, massive trapping and sorting at nanoscaleen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.schoolLee Kong Chian School of Medicine (LKCMedicine)en_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.identifier.doi10.1021/acs.nanolett.0c01464-
dc.identifier.doi10.1021/acs.nanolett.0c01464-
dc.description.versionAccepted versionen_US
dc.identifier.pmid32574502-
dc.identifier.scopus2-s2.0-85088208606-
dc.identifier.issue7en_US
dc.identifier.volume20en_US
dc.identifier.spage5193en_US
dc.identifier.epage5200en_US
dc.subject.keywordsOptofluidicsen_US
dc.subject.keywordsNanoparticle Separationen_US
dc.description.acknowledgementThis work was supported by the Singapore National Research Foundation under the Competitive Research Program (NRFCRP13-2014-01), EWI Research & Innovation Scheme (1102- IRIS-05- 04), and the Singapore Ministry of Education (MOE) Tier 3 grant (MOE2017-T3-1-001). M.N.- V. acknowledges Spanish Ministerio de Ciencia, Innovación y Universidades, Grants No. FIS2014-55563-REDC, No. FIS2015-69295-C3-1-P, and No. PGC2018-095777-B-C21.en_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:EEE Journal Articles
Files in This Item:
File Description SizeFormat 
Main text and figures4.pdf1.17 MBAdobe PDFView/Open

SCOPUSTM   
Citations 10

33
Updated on Jan 22, 2023

Web of ScienceTM
Citations 10

26
Updated on Jan 28, 2023

Page view(s)

177
Updated on Jan 28, 2023

Download(s) 50

28
Updated on Jan 28, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.