Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/151478
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Luo, Shaobo | en_US |
dc.contributor.author | Shi, Yuzhi | en_US |
dc.contributor.author | Chin, Lip Ket | en_US |
dc.contributor.author | Zhang, Yi | en_US |
dc.contributor.author | Wen, Bihan | en_US |
dc.contributor.author | Sun, Ying | en_US |
dc.contributor.author | Nguyen, Binh T. T. | en_US |
dc.contributor.author | Chierchia, Giovanni | en_US |
dc.contributor.author | Talbot, Hugues | en_US |
dc.contributor.author | Bourouina, Tarik | en_US |
dc.contributor.author | Jiang, Xudong | en_US |
dc.contributor.author | Liu, Ai-Qun | en_US |
dc.date.accessioned | 2021-06-18T01:58:30Z | - |
dc.date.available | 2021-06-18T01:58:30Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Luo, S., Shi, Y., Chin, L. K., Zhang, Y., Wen, B., Sun, Y., Nguyen, B. T. T., Chierchia, G., Talbot, H., Bourouina, T., Jiang, X. & Liu, A. (2021). Rare bioparticle detection via deep metric learning. RSC Advances, 11(29), 17603-17610. https://dx.doi.org/10.1039/D1RA02869C | en_US |
dc.identifier.issn | 2046-2069 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/151478 | - |
dc.description.abstract | Recent deep neural networks have shown superb performance in analyzing bioimages for disease diagnosis and bioparticle classification. Conventional deep neural networks use simple classifiers such as SoftMax to obtain highly accurate results. However, they have limitations in many practical applications that require both low false alarm rate and high recovery rate, e.g., rare bioparticle detection, in which the representative image data is hard to collect, the training data is imbalanced, and the input images in inference time could be different from the training images. Deep metric learning offers a better generatability by using distance information to model the similarity of the images and learning function maps from image pixels to a latent space, playing a vital role in rare object detection. In this paper, we propose a robust model based on a deep metric neural network for rare bioparticle (Cryptosporidium or Giardia) detection in drinking water. Experimental results showed that the deep metric neural network achieved a high accuracy of 99.86% in classification, 98.89% in precision rate, 99.16% in recall rate and zero false alarm rate. The reported model empowers imaging flow cytometry with capabilities of biomedical diagnosis, environmental monitoring, and other biosensing applications. | en_US |
dc.description.sponsorship | Ministry of Education (MOE) | en_US |
dc.description.sponsorship | National Research Foundation (NRF) | en_US |
dc.language.iso | en | en_US |
dc.relation.ispartof | RSC Advances | en_US |
dc.rights | © 2021 The Author(s). Published by the Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence. | en_US |
dc.subject | Engineering::Electrical and electronic engineering | en_US |
dc.title | Rare bioparticle detection via deep metric learning | en_US |
dc.type | Journal Article | en |
dc.contributor.school | School of Electrical and Electronic Engineering | en_US |
dc.identifier.doi | 10.1039/D1RA02869C | - |
dc.description.version | Published version | en_US |
dc.identifier.issue | 29 | en_US |
dc.identifier.volume | 11 | en_US |
dc.identifier.spage | 17603 | en_US |
dc.identifier.epage | 17610 | en_US |
dc.subject.keywords | Optofluidics | en_US |
dc.subject.keywords | Biomedical Engineering | en_US |
dc.description.acknowledgement | This work was supported by the Singapore National Research Foundation under the Competitive Research Program (NRFCRP13- 2014-01), Ministry of Education Tier 1 RG39/19, and the Singapore Ministry of Education (MOE) Tier 3 grant (MOE2017-T3-1-001). | en_US |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | EEE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
d1ra02869c.pdf | 1.4 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
50
1
Updated on Mar 24, 2023
Web of ScienceTM
Citations
50
2
Updated on Mar 23, 2023
Page view(s)
177
Updated on Mar 24, 2023
Download(s) 50
33
Updated on Mar 24, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.