Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/151531
Title: | Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair | Authors: | Carvalho, Cristiana R. Costa, João B. Costa, Lígia Silva-Correia, Joana Moay, Zi Kuang Ng, Kee Woei Reis, Rui L. Oliveira, Joaquim M. |
Keywords: | Engineering::Materials | Issue Date: | 2019 | Source: | Carvalho, C. R., Costa, J. B., Costa, L., Silva-Correia, J., Moay, Z. K., Ng, K. W., Reis, R. L. & Oliveira, J. M. (2019). Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair. Biomaterials Science, 7(12), 5451-5466. https://dx.doi.org/10.1039/c9bm01098j | Journal: | Biomaterials Science | Abstract: | Although surgical management of peripheral nerve injuries (PNIs) has improved over time, autografts are still the current "gold standard" treatment for PNIs, which presents numerous limitations. In an attempt to improve natural biomaterial-based nerve guidance conduits (NGCs), chitosan (CHT), a derivative of the naturally occurring biopolymer chitin, has been explored for peripheral nerve regeneration (PNR). In addition to CHT, keratin has gained enormous attention as a biomaterial and tissue engineering scaffolding. In this study, biomimetic CHT/keratin membranes were produced using a solvent casting technique. These membranes were broadly characterized in terms of their surface topography and physicochemical properties, with techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), contact angle, weight loss and water uptake measurements, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biological in vitro assays were also performed, where a preliminary cytotoxicity screening with the L929 fibroblast cell line revealed that the membranes and respective materials are suitable for cell culture. In addition, Schwann cells, fibroblasts and endothelial cells were directly seeded in the membranes. Quantitative and qualitative assays revealed that the addition of keratin enhanced cell viablity and adhesion. Based on the encouraging in vitro results, the in vivo angiogenic/antiangiogenic potential of CHT and CHT/keratin membranes was assessed, using an optimized chick embryo chorioallantoic membrane assay, where higher angiogenic responses were seen in keratin-enriched materials. Overall, the obtained results indicate the higher potential of CHT/keratin membranes for guided tissue regeneration applications in the field of PNR. | URI: | https://hdl.handle.net/10356/151531 | ISSN: | 2047-4849 | DOI: | 10.1039/c9bm01098j | Rights: | © 2019 The Royal Society of Chemistry. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | MSE Journal Articles NEWRI Journal Articles |
SCOPUSTM
Citations
20
21
Updated on Jan 25, 2023
Web of ScienceTM
Citations
20
22
Updated on Jan 28, 2023
Page view(s)
201
Updated on Jan 31, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.