Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151531
Title: Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair
Authors: Carvalho, Cristiana R.
Costa, João B.
Costa, Lígia
Silva-Correia, Joana
Moay, Zi Kuang
Ng, Kee Woei
Reis, Rui L.
Oliveira, Joaquim M.
Keywords: Engineering::Materials
Issue Date: 2019
Source: Carvalho, C. R., Costa, J. B., Costa, L., Silva-Correia, J., Moay, Z. K., Ng, K. W., Reis, R. L. & Oliveira, J. M. (2019). Enhanced performance of chitosan/keratin membranes with potential application in peripheral nerve repair. Biomaterials Science, 7(12), 5451-5466. https://dx.doi.org/10.1039/c9bm01098j
Journal: Biomaterials Science
Abstract: Although surgical management of peripheral nerve injuries (PNIs) has improved over time, autografts are still the current "gold standard" treatment for PNIs, which presents numerous limitations. In an attempt to improve natural biomaterial-based nerve guidance conduits (NGCs), chitosan (CHT), a derivative of the naturally occurring biopolymer chitin, has been explored for peripheral nerve regeneration (PNR). In addition to CHT, keratin has gained enormous attention as a biomaterial and tissue engineering scaffolding. In this study, biomimetic CHT/keratin membranes were produced using a solvent casting technique. These membranes were broadly characterized in terms of their surface topography and physicochemical properties, with techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), contact angle, weight loss and water uptake measurements, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Biological in vitro assays were also performed, where a preliminary cytotoxicity screening with the L929 fibroblast cell line revealed that the membranes and respective materials are suitable for cell culture. In addition, Schwann cells, fibroblasts and endothelial cells were directly seeded in the membranes. Quantitative and qualitative assays revealed that the addition of keratin enhanced cell viablity and adhesion. Based on the encouraging in vitro results, the in vivo angiogenic/antiangiogenic potential of CHT and CHT/keratin membranes was assessed, using an optimized chick embryo chorioallantoic membrane assay, where higher angiogenic responses were seen in keratin-enriched materials. Overall, the obtained results indicate the higher potential of CHT/keratin membranes for guided tissue regeneration applications in the field of PNR.
URI: https://hdl.handle.net/10356/151531
ISSN: 2047-4849
DOI: 10.1039/c9bm01098j
Rights: © 2019 The Royal Society of Chemistry. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles
NEWRI Journal Articles

SCOPUSTM   
Citations 20

6
Updated on Jun 26, 2021

PublonsTM
Citations 20

8
Updated on Jun 25, 2021

Page view(s)

151
Updated on May 20, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.