Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151602
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDi, Junen_US
dc.contributor.authorXia, Jiexiangen_US
dc.contributor.authorChisholm, Matthew F.en_US
dc.contributor.authorZhong, Junen_US
dc.contributor.authorChen, Chaoen_US
dc.contributor.authorCao, Xingzhongen_US
dc.contributor.authorDong, Fanen_US
dc.contributor.authorChi, Zhenen_US
dc.contributor.authorChen, Hailongen_US
dc.contributor.authorWeng, Yu-Xiangen_US
dc.contributor.authorXiong, Junen_US
dc.contributor.authorYang, Shi-Zeen_US
dc.contributor.authorLi, Huamingen_US
dc.contributor.authorLiu, Zhengen_US
dc.contributor.authorDai, Shengen_US
dc.date.accessioned2021-07-13T03:54:01Z-
dc.date.available2021-07-13T03:54:01Z-
dc.date.issued2019-
dc.identifier.citationDi, J., Xia, J., Chisholm, M. F., Zhong, J., Chen, C., Cao, X., Dong, F., Chi, Z., Chen, H., Weng, Y., Xiong, J., Yang, S., Li, H., Liu, Z. & Dai, S. (2019). Defect-tailoring mediated electron–hole separation in single-unit-cell Bi₃O₄Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixation. Advanced Materials, 31(28), e1807576-. https://dx.doi.org/10.1002/adma.201807576en_US
dc.identifier.issn0935-9648en_US
dc.identifier.other0000-0002-8825-7198-
dc.identifier.urihttps://hdl.handle.net/10356/151602-
dc.description.abstractSolar photocatalysis is a potential solution to satisfying energy demand and its resulting environmental impact. However, the low electron-hole separation efficiency in semiconductors has slowed the development of this technology. The effect of defects on electron-hole separation is not always clear. A model atomically thin structure of single-unit-cell Bi3 O4 Br nanosheets with surface defects is proposed to boost photocatalytic efficiency by simultaneously promoting bulk- and surface-charge separation. Defect-rich single-unit-cell Bi3 O4 Br displays 4.9 and 30.9 times enhanced photocatalytic hydrogen evolution and nitrogen fixation activity, respectively, than bulk Bi3 O4 Br. After the preparation of single-unit-cell structure, the bismuth defects are controlled to tune the oxygen defects. Benefiting from the unique single-unit-cell architecture and defects, the local atomic arrangement and electronic structure are tuned so as to greatly increase the charge separation efficiency and subsequently boost photocatalytic activity. This strategy provides an accessible pathway for next-generation photocatalysts.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relationNRF-RF2013-08en_US
dc.relationMOE2016-T2-1-131en_US
dc.relationMOE2018-T3-1-002en_US
dc.relation2017-T1-001-075en_US
dc.relation.ispartofAdvanced Materialsen_US
dc.rights© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.en_US
dc.subjectEngineering::Materialsen_US
dc.titleDefect-tailoring mediated electron–hole separation in single-unit-cell Bi₃O₄Br nanosheets for boosting photocatalytic hydrogen evolution and nitrogen fixationen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.contributor.researchCentre for Programmable Materialsen_US
dc.identifier.doi10.1002/adma.201807576-
dc.identifier.pmid31081183-
dc.identifier.scopus2-s2.0-85065736297-
dc.identifier.issue28en_US
dc.identifier.volume31en_US
dc.identifier.spagee1807576en_US
dc.subject.keywordsCharge Separationen_US
dc.subject.keywordsDefect Engineeringen_US
dc.description.acknowledgementThis work was financially supported by the National Natural Science Foundation of China (Nos. 21676128 and 21576123) and Singapore National Research Foundation under NRF RF Award No. NRF-RF2013-08, MOE2016-T2-1-131, MOE2018-T3-1-002, Tier 1 2017-T1-001-075. The electron microscopy done at ORNL (S.-Z.Y. and M.F.C.) was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division and through a user project supported by ORNL’s Center for Nanophase Materials Sciences, which was sponsored by the Scientific User Facilities Division of U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which was supported by National Science Foundation under Grant Nos. ACI-1053575 and DMR160118.en_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 1

320
Updated on Mar 25, 2024

Web of ScienceTM
Citations 1

286
Updated on Oct 29, 2023

Page view(s)

269
Updated on Mar 27, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.