Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/151672
Title: | Evolving large-scale data stream analytics based on scalable PANFIS | Authors: | Za'in, Choiru Pratama, Mahardhika Pardede, Eric |
Keywords: | Engineering::Computer science and engineering | Issue Date: | 2019 | Source: | Za'in, C., Pratama, M. & Pardede, E. (2019). Evolving large-scale data stream analytics based on scalable PANFIS. Knowledge-Based Systems, 166, 186-197. https://dx.doi.org/10.1016/j.knosys.2018.12.028 | Journal: | Knowledge-Based Systems | Abstract: | The main challenge in large-scale data stream analytics lies in the ability of machine learning to generate large-scale data knowledge in reasonable timeframe without suffering from a loss of accuracy. Many distributed machine learning frameworks have recently been built to speed up the large-scale data learning process. However, most distributed machine learning used in these frameworks still uses an offline algorithm model which cannot cope with the data stream problems. In fact, large-scale data are mostly generated by the non-stationary data stream where its pattern evolves over time. To address this problem, we propose a novel Evolving Large-scale Data Stream Analytics framework based on a Scalable Parsimonious Network based on Fuzzy Inference System (Scalable PANFIS), where the PANFIS evolving algorithm is distributed over the worker nodes in the cloud to learn large-scale data stream. Scalable PANFIS framework incorporates the active learning (AL) strategy and two model fusion methods. The AL accelerates the distributed learning process to generate an initial evolving large-scale data stream model (initial model), whereas the two model fusion methods aggregate an initial model to generate the final model. The final model represents the update of current large-scale data knowledge which can be used to infer future data. Extensive experiments on this framework are validated by measuring the accuracy and running time of four combinations of Scalable PANFIS and other Spark-based built in algorithms. The results indicate that Scalable PANFIS with AL improves the training time to be almost two times faster than Scalable PANFIS without AL. The results also show both rule merging and the voting mechanisms yield similar accuracy in general among Scalable PANFIS algorithms and they are generally better than Spark-based algorithms. In terms of running time, the Scalable PANFIS training time outperforms all Spark-based algorithms when classifying a multi-class label dataset. | URI: | https://hdl.handle.net/10356/151672 | ISSN: | 0950-7051 | DOI: | 10.1016/j.knosys.2018.12.028 | Schools: | School of Computer Science and Engineering | Rights: | © 2019 Elsevier B.V. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SCSE Journal Articles |
SCOPUSTM
Citations
50
8
Updated on May 6, 2025
Web of ScienceTM
Citations
20
6
Updated on Oct 24, 2023
Page view(s)
231
Updated on May 5, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.