Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/151678
Title: | Learning binary codes with neural collaborative filtering for efficient recommendation systems | Authors: | Li, Yang Wang, Suhang Pan, Quan Peng, Haiyun Yang, Tao Cambria, Erik |
Keywords: | Engineering::Computer science and engineering | Issue Date: | 2019 | Source: | Li, Y., Wang, S., Pan, Q., Peng, H., Yang, T. & Cambria, E. (2019). Learning binary codes with neural collaborative filtering for efficient recommendation systems. Knowledge-Based Systems, 172, 64-75. https://dx.doi.org/10.1016/j.knosys.2019.02.012 | Journal: | Knowledge-Based Systems | Abstract: | The fast-growing e-commerce scenario brings new challenges to traditional collaborative filtering because the huge amount of users and items requires large storage and efficient recommendation systems. Hence, hashing for collaborative filtering has attracted increasing attention as binary codes can significantly reduce the storage requirement and make similarity calculations efficient. In this paper, we investigate the novel problem of deep collaborative hashing codes on user–item ratings. We propose a new deep learning framework for it, which adopts neural networks to better learn both user and item representations and make these close to binary codes such that the quantization loss is minimized. In addition, we extend the proposed framework for out-of-sample cases, i.e., dealing with new users, new items, and new ratings. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed framework. | URI: | https://hdl.handle.net/10356/151678 | ISSN: | 0950-7051 | DOI: | 10.1016/j.knosys.2019.02.012 | Schools: | School of Computer Science and Engineering | Rights: | © 2019 Elsevier B.V. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | SCSE Journal Articles |
SCOPUSTM
Citations
5
76
Updated on May 5, 2025
Web of ScienceTM
Citations
10
42
Updated on Oct 29, 2023
Page view(s)
268
Updated on May 5, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.