Please use this identifier to cite or link to this item:
Title: Autoinducer-2-mediated quorum sensing partially regulates the toxic shock response of anaerobic digestion
Authors: Xiao, Yeyuan
Yaohari, Hazarki
Zhou, Zhongbo
Sze, Chun Chau
Stuckey, David C.
Keywords: Science::Biological sciences
Issue Date: 2019
Source: Xiao, Y., Yaohari, H., Zhou, Z., Sze, C. C. & Stuckey, D. C. (2019). Autoinducer-2-mediated quorum sensing partially regulates the toxic shock response of anaerobic digestion. Water Research, 158, 94-105.
Project: EWI-IRIS-0807
Journal: Water Research
Abstract: This study discovered a strong correlation between the autoinducer-2 (AI-2)-mediated quorum sensing (QS) with the performance of a submerged anaerobic membrane bioreactor during its recovery from a pentachlorophenol (PCP) shock: a decrease in AI-2 levels coincided with a reduction in volatile fatty acid concentrations, and corresponded significantly to a decrease in the relative abundance of Firmicutes, and to an increase in the relative abundance of Bacteroidetes and Synergistetes. Further batch experiments with the addition of an AI-2-regulating Escherichia coli mutant culture showed that a reduction in AI-2 levels resulted in the highest biogas production rate during a PCP shock. In contrast, an increase in AI-2 levels via addition of the E. coli wild type strain or an AI-2 precursor showed no obvious effects on biogas production. These results suggest that the AI-2 level in anaerobic sludge was governed primarily by Firmicutes, and the AI-2-mediated QS partially regulates the toxic shock response of anaerobic sludge via tuning the activities of Firmicutes and Synergistetes. A decrease in the AI-2 level might reduce acetogenesis and favor hydrogenotrophic methanogenesis, thus resulting in less VFA accumulation and higher methane production during the PCP shock. This study is the first of this type that exploits the role of quorum sensing in the toxic shock response of anaerobic sludge; it demonstrates a novel approach to shortening the recovery period of anaerobic processes via manipulating the AI-2-mediated QS.
ISSN: 0043-1354
DOI: 10.1016/j.watres.2019.04.024
Rights: © 2019 Elsevier Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SBS Journal Articles

Citations 10

Updated on Jan 28, 2023

Web of ScienceTM
Citations 10

Updated on Feb 3, 2023

Page view(s)

Updated on Feb 4, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.