Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/151829
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWang, Junen_US
dc.contributor.authorXu, Huawenen_US
dc.contributor.authorSu, Ruien_US
dc.contributor.authorPeng, Yutianen_US
dc.contributor.authorWu, Jinqien_US
dc.contributor.authorLiew, Timothy Chi Hinen_US
dc.contributor.authorXiong, Qihuaen_US
dc.date.accessioned2021-08-08T09:48:35Z-
dc.date.available2021-08-08T09:48:35Z-
dc.date.issued2021-
dc.identifier.citationWang, J., Xu, H., Su, R., Peng, Y., Wu, J., Liew, T. C. H. & Xiong, Q. (2021). Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light: Science & Applications, 10(1), 45-. https://dx.doi.org/10.1038/s41377-021-00478-wen_US
dc.identifier.issn2095-5545en_US
dc.identifier.other0000-0002-4148-4123-
dc.identifier.other0000-0002-9112-1654-
dc.identifier.other0000-0002-2555-4363-
dc.identifier.urihttps://hdl.handle.net/10356/151829-
dc.description.abstractExciton-polariton condensation is regarded as a spontaneous macroscopic quantum phenomenon with phase ordering and collective coherence. By engineering artificial annular potential landscapes in halide perovskite semiconductor microcavities, we experimentally and theoretically demonstrate the room-temperature spontaneous formation of a coherent superposition of exciton-polariton orbital states with symmetric petal-shaped patterns in real space, resulting from symmetry breaking due to the anisotropic effective potential of the birefringent perovskite crystals. The lobe numbers of such petal-shaped polariton condensates can be precisely controlled by tuning the annular potential geometry. These petal-shaped condensates form in multiple orbital states, carrying locked alternating π phase shifts and vortex–antivortex superposition cores, arising from the coupling of counterrotating exciton-polaritons in the confined circular waveguide. Our geometrically patterned microcavity exhibits promise for realizing room-temperature topological polaritonic devices and optical polaritonic switches based on periodic annular potentials.en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.language.isoenen_US
dc.relationMOE2018-T3-1-002en_US
dc.relationMOE2017-T2-1-040en_US
dc.relationMOE2017-T2-1-001en_US
dc.relationMOE2018-T2-02-068en_US
dc.relationRG103/15en_US
dc.relationRG113/16en_US
dc.relation.ispartofLight: Science & Applicationsen_US
dc.relation.uri10.21979/N9/UNX5DXen_US
dc.rights© 2021 The Author(s). Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.en_US
dc.subjectScience::Physicsen_US
dc.titleSpontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavitiesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.organizationMajuLab @ NTUen_US
dc.contributor.researchCNRS International NTU THALES Research Alliancesen_US
dc.identifier.doi10.1038/s41377-021-00478-w-
dc.description.versionPublished versionen_US
dc.identifier.pmid33649295-
dc.identifier.scopus2-s2.0-85101796279-
dc.identifier.issue1en_US
dc.identifier.volume10en_US
dc.identifier.spage45en_US
dc.subject.keywordsPhotonic Devicesen_US
dc.subject.keywordsPolaritonsen_US
dc.description.acknowledgementThis work was supported by the Singapore Ministry of Education via AcRF Tier 3 Programme “Geometrical Quantum Materials” (MOE2018-T3-1-002), AcRF Tier 2 grants (MOE2017-T2-1-040, MOE2017-T2-1-001 and MOE2018-T2-02-068), and Tier 1 grants (RG103/15 and RG113/16). Q.X. gratefully acknowledges the funding support from the National Natural Science Foundation of China (No. 12020101003) and a Tsinghua University start-up grant.en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
s41377-021-00478-w.pdf1.09 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 10

36
Updated on Mar 23, 2025

Web of ScienceTM
Citations 20

19
Updated on Oct 27, 2023

Page view(s)

346
Updated on Mar 24, 2025

Download(s) 50

105
Updated on Mar 24, 2025

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.