Please use this identifier to cite or link to this item:
Title: Photocatalytic removal of antibiotics from natural water matrices and swine wastewater via Cu(I) coordinately polymeric carbon nitride framework
Authors: Wang, Hou
Zhang, Jingjing
Yuan, Xingzhong
Jiang, Longbo
Xia, Qi
Chen, Haoyun
Keywords: Science::Chemistry
Issue Date: 2019
Source: Wang, H., Zhang, J., Yuan, X., Jiang, L., Xia, Q. & Chen, H. (2019). Photocatalytic removal of antibiotics from natural water matrices and swine wastewater via Cu(I) coordinately polymeric carbon nitride framework. Chemical Engineering Journal, 392, 123638-.
Journal: Chemical Engineering Journal
Abstract: The overuse of refractory antibiotics in animal husbandry has caused serious aqueous environment pollution. Polymeric carbon nitride (CN) based photocatalysis, a promising method to address antibiotic pollution issues, has encountered with restricted efficiency because of the sluggish charge transfer and unexploited water matrices influence. In this study, an efficient metal to ligand charge transfer (MLCT) was successfully implanted into the Cu(I) coordinately polymeric carbon nitride framework (Cu-CNF) via the bonds of coordinated Cu(I) with organic N and few inorganic O atoms. The Cu-CNF photocatalysts were endowed with high-efficient chlortetracycline hydrochloride (CTC-HCl) removal in deionized water. To insure the feasibility of the Cu-CNF in antibiotics removal from different water matrices, a systematical exploration covering the reaction kinetics, the physicochemical stability, and the influence of specific water matrices on CTC-HCl removal was carried out by various ways. Results showed that the photo-induced MLCT route with shorter transfer distance was able to broaden light absorption of CN in the whole visible region, contributing to more available excitons and accelerating separation of the photoexcited electron-hole pairs. The boosted active oxidative species (h+, O2− and ∙OH) in porous Cu-CNF were found to promote the dechlorination and benzene ring cleavage process to favor the final mineralization of CTC-HCl molecules. Under the synergistic influence of water constituents, the removal efficiency of CTC-HCl was highest in river water (68.2%), followed by tap water (45.7%), and swine wastewater (33.1%). It was found that the existence of the high concentration NOx-N and NH3-N in the swine wastewater were responsible for the collapsed removal efficiency of CTC-HCl. Natural organic matter in river water and tap water was the main factor for the decreased CTC-HCl removal efficiency.
ISSN: 1385-8947
DOI: 10.1016/j.cej.2019.123638
Rights: © 2020 Elsevier B.V. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

Page view(s)

Updated on Sep 21, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.