Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/152148
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHasan, Mehedien_US
dc.date.accessioned2021-07-22T00:34:58Z-
dc.date.available2021-07-22T00:34:58Z-
dc.date.issued2021-
dc.identifier.citationHasan, M. (2021). Dynamics of quantum gas in non-abelian gauge field. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/152148en_US
dc.identifier.urihttps://hdl.handle.net/10356/152148-
dc.description.abstractExperimental observation of Zitterbewegung is considered a holy grail of the modern physics since its debut in 1930 by Schr odinger. In this thesis we describe the  first experimental observation of this effect in a two-dimensional ultracold atomic wave packet. In addition to that, we have also revealed the anisotropic of nature of Zitterbewegung, in the presence of non-Abelian Gauge  field. To observe this e ect, we have performed laser cooling in two major steps 461 nm magneto-optical trap (MOT) and 689 nm MOT and then loaded the atoms into an optical dipole trap. After performing optical pumping to one of the Zeeman states of the hyper ne ground-state, while atoms are inside the dipole trap, we have cooled down the strontium-87 atoms via evaporativ cooling and the gas enters the quantum regime at a T/T_F = 0.21(4), with Temperature T and Fermi temperature T_F. As the temperature of the gas (40-50 nK) is far below the recoil temperature(230 nK) of the atoms, we have performed experiments with the wave packet that reveals the envisaged Zitterbewegung effect. In order to demonstrate the anisotropy of the Zitterbewegung, we introduced a kick to the cold atomic wave packet so that the wave packet explores the momentumdependence of the energy eigenstates of the dressed Hamiltonian. We reveal the complete anisotropic nature of the Zitterbewegung amplitude and the relation of the oscillation frequency with the energy-gap between the two bands. We speculate that this could be a new way to map the band-diagram of a multi-band system. All the results are analyzed and explained with analytic calculations coupled with numerical analysis.en_US
dc.language.isoenen_US
dc.publisherNanyang Technological Universityen_US
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).en_US
dc.subjectScience::Physics::Atomic physics::Quantum theoryen_US
dc.subjectScience::Physics::Atomic physics::Properties of matter and antimatteren_US
dc.titleDynamics of quantum gas in non-abelian gauge fielden_US
dc.typeThesis-Doctor of Philosophyen_US
dc.contributor.supervisorDavid Wilkowskien_US
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.description.degreeDoctor of Philosophyen_US
dc.contributor.supervisoremaildavid.wilkowski@ntu.edu.sgen_US
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:SPMS Theses
Files in This Item:
File Description SizeFormat 
Thesis Mehedi_Hasan Submission .pdf24.19 MBAdobe PDFView/Open

Page view(s)

11
Updated on Jul 25, 2021

Download(s)

2
Updated on Jul 25, 2021

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.