Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/152200
Title: Embedded PdFe@N-carbon nanoframes for oxygen reduction in acidic fuel cells
Authors: Jiang, Xian
Elouarzaki, Kamal
Tang, Yawen
Zhou, Jiancheng
Fu, Gengtao
Lee, Jong-Min
Keywords: Engineering::Chemical engineering
Issue Date: 2020
Source: Jiang, X., Elouarzaki, K., Tang, Y., Zhou, J., Fu, G. & Lee, J. (2020). Embedded PdFe@N-carbon nanoframes for oxygen reduction in acidic fuel cells. Carbon, 164, 369-377. https://dx.doi.org/10.1016/j.carbon.2020.04.013
Project: RG105/19
Journal: Carbon
Abstract: Carbon-supported metal nanoparticles are widely used as electrocatalysts in polymer electrolyte membrane fuel cells (PEMFCs), but still suffer from deactivation because of metal leaching and sintering at high temperature. Herein, we propose a novel and scalable metal coordination-polymer strategy for the facile synthesis of bimetallic PdFe nanoparticles embedded nitrogen-doped carbon (PdFe@N-C) nanoframes as a Mott-Schottky electrocatalyst to efficiently catalyze the oxygen reduction reaction (ORR) in PEMFCs. The metal coordination-polymer is formed through metal ions (Pd and Fe) mediated self-polymerization of 1-naphthylamine (NA), which allows alloy nanoparticles to bind tightly with N-carbon nanoframes after pyrolysis. It is found that PdFe nanoparticles with very small particle-size are uniformly embedded in the porous N-carbon nanoframes and physically separated from each other by the carbon matrix. Profited from the unique structure and composition merits, the half-wave potential of the developed PdFe@N-C nanoframes towards ORR is positively shifted by 30 and 50 mV compared to those of Pd@N-C and Pd/C, respectively. Importantly, the PdFe@N-C nanoframes derived acidic PEMFC delivers a high-power density of 0.91 W cm⁻² together with remarkable operational stability after 10 h discharging. Such good performances make the metal-NA coordination-polymer an attractive precursor to design and synthesize high-performance electrocatalysts for fuel cells.
URI: https://hdl.handle.net/10356/152200
ISSN: 0008-6223
DOI: 10.1016/j.carbon.2020.04.013
Rights: © 2020 Elsevier Ltd. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCBE Journal Articles

Page view(s)

66
Updated on Dec 2, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.