Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/152425
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHe, Yongminen_US
dc.contributor.authorTang, Pengyien_US
dc.contributor.authorHu, Zhilien_US
dc.contributor.authorHe, Qiyuanen_US
dc.contributor.authorZhu, Chaoen_US
dc.contributor.authorWang, Luqingen_US
dc.contributor.authorZeng, Qingshengen_US
dc.contributor.authorGolani, Praffulen_US
dc.contributor.authorGao, Guanhuien_US
dc.contributor.authorFu, Weien_US
dc.contributor.authorHuang, Zhiqien_US
dc.contributor.authorGao, Caitianen_US
dc.contributor.authorXia, Juanen_US
dc.contributor.authorWang, Xinglien_US
dc.contributor.authorWang, Xuewenen_US
dc.contributor.authorZhu, Chaoen_US
dc.contributor.authorRamasse, Quentin Men_US
dc.contributor.authorZhang, Aoen_US
dc.contributor.authorAn, Boxingen_US
dc.contributor.authorZhang, Yongzheen_US
dc.contributor.authorMartí-Sánchez, Saraen_US
dc.contributor.authorMorante, Joan Ramonen_US
dc.contributor.authorWang, Liangen_US
dc.contributor.authorTay, Beng Kangen_US
dc.contributor.authorYakobson, Boris Ien_US
dc.contributor.authorTrampert, Achimen_US
dc.contributor.authorZhang, Huaen_US
dc.contributor.authorWu, Minghongen_US
dc.contributor.authorWang, Qi Jieen_US
dc.contributor.authorArbiol, Jordien_US
dc.contributor.authorLiu, Zhengen_US
dc.date.accessioned2021-08-24T07:39:52Z-
dc.date.available2021-08-24T07:39:52Z-
dc.date.issued2020-
dc.identifier.citationHe, Y., Tang, P., Hu, Z., He, Q., Zhu, C., Wang, L., Zeng, Q., Golani, P., Gao, G., Fu, W., Huang, Z., Gao, C., Xia, J., Wang, X., Wang, X., Zhu, C., Ramasse, Q. M., Zhang, A., An, B., ...Liu, Z. (2020). Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction. Nature Communications, 11, 57-. https://dx.doi.org/10.1038/s41467-019-13631-2en_US
dc.identifier.issn2041-1723en_US
dc.identifier.urihttps://hdl.handle.net/10356/152425-
dc.description.abstractAtom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm-2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: -25 mV and Tafel slope: 54 mV dec-1), thus indicating an intrinsically high activation of the TMD GBs.en_US
dc.description.sponsorshipAgency for Science, Technology and Research (A*STAR)en_US
dc.description.sponsorshipMinistry of Education (MOE)en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.language.isoenen_US
dc.relationAcRF Tier 1 (M4011782.070 RG4/17 and M4011993.070 RG7/18)en_US
dc.relationAcRF Tier 2 (2015- T2-2-007, 2016-T2-1-131, 2016-T2-2-153, and 2017-T2-2-136)en_US
dc.relationAcRF Tier 3 (2018-T3- 1-002)en_US
dc.relationNRF-CRP21- 2018-0092en_US
dc.relationMOE2016-T2-2-159en_US
dc.relationMOE2016-T2-1-128en_US
dc.relationMOE Tier 1 RG164/15en_US
dc.relationNRF-CRP18-2017-02en_US
dc.relationNSFC (61704082)en_US
dc.relationMOE2015-T2-2-043en_US
dc.relationAcRF Tier 2 (MOE2015-T2-2-057; MOE2016-T2- 2-103; and MOE2017-T2-1-162)en_US
dc.relationAcRF Tier 1 (2016-T1-002-051; 2017-T1-001-150; and 2017-T1-002-119)en_US
dc.relationA1783c0009en_US
dc.relationM4081296.070.500000en_US
dc.relation.ispartofNature Communicationsen_US
dc.rights© 2020 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.en_US
dc.subjectEngineering::Nanotechnologyen_US
dc.subjectEngineering::Materialsen_US
dc.titleEngineering grain boundaries at the 2D limit for the hydrogen evolution reactionen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.contributor.organizationCity University of Hong Kongen_US
dc.contributor.researchCentre for OptoElectronics and Biophotonics (OPTIMUS)en_US
dc.contributor.researchCentre for Micro-/Nano-electronics (NOVITAS)en_US
dc.contributor.researchCNRS International NTU THALES Research Alliancesen_US
dc.contributor.researchCINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plazaen_US
dc.contributor.researchNanyang Environment and Water Research Instituteen_US
dc.contributor.researchEnvironmental Chemistry and Materials Centreen_US
dc.contributor.researchThe Photonics Instituteen_US
dc.identifier.doi10.1038/s41467-019-13631-2-
dc.description.versionPublished versionen_US
dc.identifier.pmid31896753-
dc.identifier.scopus2-s2.0-85077445109-
dc.identifier.volume11en_US
dc.identifier.spage57en_US
dc.subject.keywordsTwo-dimensional Materialsen_US
dc.subject.keywordsCatalyst Synthesisen_US
dc.subject.keywordsElectrocatalysisen_US
dc.description.acknowledgementZ.L. gratefully acknowledges funding supports from Ministry of Education (MOE) under AcRF Tier 1 (M4011782.070 RG4/17 and M4011993.070 RG7/18), AcRF Tier 2 (2015- T2-2-007, 2016-T2-1-131, 2016-T2-2-153, and 2017-T2-2-136), AcRF Tier 3 (2018-T3- 1-002), National Research Foundation – Competitive Research Program (NRF-CRP21- 2018-0092), and A*Star QTE programme. P.T., S.M.S., J.R.M., and J.A. acknowledge funding from Generalitat de Catalunya 2017 SGR 327 and 1246 and the Spanish MINECO coordinated projects between IREC and ICN2 VALPEC (ENE2017-85087-C2- C3). ICN2 acknowledges support from the Severo Ochoa Program (MINECO, Grant SEV-2017-0706). IREC and ICN2 are funded by the CERCA Programme/Generalitat de Catalunya. Part of the present work has been performed in the framework of Universitat Autònoma de Barcelona Materials Science PhD program. S.M.S. acknowledges funding from ‘Programa Internacional de Becas “la Caixa”-Severo Ochoa’. J.R.M. recognizes also its affiliation to University of Barcelona. Part of the electron microscopy aspects of this work were supported by the EPSRC (UK), as the SuperSTEM Laboratory is the EPSRC National Research Facility for Advanced Electron Microscopy. Q.J.W. acknowledges the supports from MOE, Singapore grant (MOE2016-T2-2-159, MOE2016-T2-1-128, and MOE Tier 1 RG164/15) and National Research Foundation, Competitive Research Program (NRF-CRP18-2017-02) and NSFC (61704082) as well as Natural Science Foundation of Jiangsu Province (BK20170851). X.W. and B.K.T. gratefully acknowledge funding support from MOE, Singapore (grant no. MOE2015-T2-2-043). H.Z. acknowledges the supports from MOE under AcRF Tier 2 (MOE2015-T2-2-057; MOE2016-T2- 2-103; and MOE2017-T2-1-162), AcRF Tier 1 (2016-T1-002-051; 2017-T1-001-150; and 2017-T1-002-119), Agency for Science, Technology and Research (A*STAR) under its AME IRG (Project No. A1783c0009), and NTU under Start-Up Grant (M4081296.070.500000) in Singapore. The authors would like to acknowledge the Facility for Analysis, Characterization, Testing, and Simulation, Nanyang Technological University, Singapore, for their electron microscopy and X-ray facilities. H.Z. also thanks the support from ITC via Hong Kong Branch of National Precious Metals Material Engineering Research Center, and the Start-Up Grant from City University of Hong Kong. Theory and simulations work at Rice university (Z.H., L.W., and B.I.Y.) was supported by the Office of Naval Research grant N00014-18-1-2182.en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:EEE Journal Articles
MSE Journal Articles
NEWRI Journal Articles
Files in This Item:
File Description SizeFormat 
Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction.pdf8.22 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 5

161
Updated on Mar 25, 2024

Web of ScienceTM
Citations 5

138
Updated on Oct 24, 2023

Page view(s)

345
Updated on Mar 28, 2024

Download(s) 50

71
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.