Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/152697
Title: Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline
Authors: Li, Xuhao
Wong, Patricia Jia Yiing
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2019
Source: Li, X. & Wong, P. J. Y. (2019). Numerical solutions of fourth-order fractional sub-diffusion problems via parametric quintic spline. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 99(5), e201800094-. https://dx.doi.org/10.1002/zamm.201800094
Journal: ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
Abstract: In this paper, we develop a numerical scheme for a fourth-order fractional sub-diffusion problem using parametric quintic spline and a non-uniform approximation for Caputo fractional derivatives. The solvability, convergence and stability of the scheme are established in maximum norm, and it is shown that the convergence order is higher than some earlier work done. Four numerical experiments are further carried out to demonstrate the efficiency of the proposed scheme as well as to compare with other methods.
URI: https://hdl.handle.net/10356/152697
ISSN: 0044-2267
DOI: 10.1002/zamm.201800094
Rights: © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:EEE Journal Articles

Page view(s)

49
Updated on Jan 15, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.