Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/152761
Title: Equiangular lines in low dimensional Euclidean spaces
Authors: Greaves, Gary Royden Watson
Syatriadi, Jeven
Yatsyna, Pavlo
Keywords: Science::Mathematics::Discrete mathematics::Combinatorics
Science::Mathematics::Discrete mathematics::Theory of computation
Issue Date: 2021
Source: Greaves, G. R. W., Syatriadi, J. & Yatsyna, P. (2021). Equiangular lines in low dimensional Euclidean spaces. Combinatorica. https://dx.doi.org/10.1007/s00493-020-4523-0
Project: RG29/18
RG21/20
Journal: Combinatorica
Abstract: We show that the maximum cardinality of an equiangular line system in 14 and 16 dimensions is 28 and 40, respectively, thereby solving a longstanding open problem. We also improve the upper bounds on the cardinality of equiangular line systems in 19 and 20 dimensions to 74 and 94, respectively.
URI: https://hdl.handle.net/10356/152761
ISSN: 0209-9683
DOI: 10.1007/s00493-020-4523-0
Rights: © 2021 János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SPMS Journal Articles

Page view(s)

35
Updated on May 15, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.