Please use this identifier to cite or link to this item:
Title: Versatile grasping for shelf placement of FMCG items
Authors: Das Bisakha
Keywords: Engineering::Computer science and engineering
Issue Date: 2021
Publisher: Nanyang Technological University
Source: Das Bisakha (2021). Versatile grasping for shelf placement of FMCG items. Final Year Project (FYP), Nanyang Technological University, Singapore.
Project: SCSE20-1119
Abstract: Versatile grasping is one of the most basic forms of robotic manipulation. Versatile grasping's purpose is to gain great autonomy in dexterous manipulation tasks in an unstructured environment. An example of such an unstructured environment with scope of versatile pick and placement options is the task of shelf-placement, requiring high and low levels of perceptual reasoning. In this paper, we chose to extend the novel model structure of Transporter Networks beyond tabletop actions performed on extruded 2-dimensional solid objects utilizing 3 Degrees of Freedom (DoF). These extensions are based on the development of an agent capable of performing shelf- placement with 6-DoF movements on two distinct axis planes. This agent has been trained on a dataset of weighted Fast-Moving Consumer Goods (FMCG) objects, both un-textured and textured. Since the training was based on imitation learning, an expert agent was developed and implemented as well. The results obtained from training the 6-DoF agent on demonstrations provided by the expert agent confirm its successful extension to 6-DoF on two planes of axis with a 70% accuracy on FMCG products. The results further indicate the success of the agent on industry benchmarked untextured and textured Yale-CMU-Berkeley (YCB) objects. In addition to extending and contributing to existing research, this work also paves the way for future research with a real UR5e robot.
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
4.42 MBAdobe PDFView/Open

Page view(s)

Updated on Jan 21, 2022


Updated on Jan 21, 2022

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.