Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/153427
Title: Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons : roles of hydrophobicity of PFAS and carbon characteristics
Authors: Park, Minkyu
Wu, Shimin
Lopez, Israel J.
Chang, Joseph Y.
Karanfil, Tanju
Snyder, Shane Allen
Keywords: Engineering::Environmental engineering::Water treatment
Issue Date: 2020
Source: Park, M., Wu, S., Lopez, I. J., Chang, J. Y., Karanfil, T. & Snyder, S. A. (2020). Adsorption of perfluoroalkyl substances (PFAS) in groundwater by granular activated carbons : roles of hydrophobicity of PFAS and carbon characteristics. Water Research, 170, 115364-. https://dx.doi.org/10.1016/j.watres.2019.115364
Journal: Water Research 
Abstract: The adsorption breakthrough behavior of nine perfluoroalkyl substances (PFAS) in groundwaters by four bituminous coal-based granular activated carbons (F400, Carbsorb 40, HPC and CMR400) was studied using rapid small-scale column tests (RSSCTs). The half breakthrough bed volume (BV50), an indicator of apparent adsorption capacity, correlated with the hydrophobicity of PFAS at a given pH (i.e., Log Dow) for F400, indicating that hydrophobic interaction is important for apparent adsorption capacity of PFAS in groundwater with low dissolved organic concentrations (DOC < 1 mg C/L) and low specific UV absorbances at 254 nm (SUVA254 < 2 L mg-1m-1). Higher empty bed contact time (EBCT) caused steeper PFAS breakthrough curves with respect to throughput, but did not affect apparent adsorption capacity. Three different sizes of F400 (0.13, 0.17, and 0.20 mm) exhibited similar breakthrough profiles of PFAS, indicating that the intraparticle diffusivity was independent of adsorbent diameter in the given conditions. Among the tested carbons, the positively charged adsorbents (F400, HPC, and CMR400) showed higher apparent adsorption capacities for hydrophilic (Log Dow at pH 7 < 0) and marginally hydrophobic PFAS (Log Dow at pH 7 between 0 and 1) than the negatively charged adsorbent (Carbsorb 40). In addition, activated carbons with higher micropore surface areas exhibited higher apparent adsorption capacities of hydrophilic and marginally hydrophobic PFAS among the positively-charged activated carbons, whereas the mesoporous carbon (HPC) exhibited an increasingly larger adsorption capacity for more hydrophobic PFAS compared to the microporous carbon (F400) at a later breakthrough possibly due to less pore blockage.
URI: https://hdl.handle.net/10356/153427
ISSN: 0043-1354
DOI: 10.1016/j.watres.2019.115364
Rights: © 2019 Elsevier Ltd. All rights reserved. This paper was published in Water Research and is made available with permission of Elsevier Ltd.
Fulltext Permission: embargo_20220308
Fulltext Availability: With Fulltext
Appears in Collections:NEWRI Journal Articles

Files in This Item:
File Description SizeFormat 
KMF GAC adsorption for PFAS Manuscript for NTU.pdf
  Until 2022-03-08
2.95 MBAdobe PDFUnder embargo until Mar 08, 2022

SCOPUSTM   
Citations 5

55
Updated on Dec 1, 2021

PublonsTM
Citations 5

45
Updated on Dec 1, 2021

Page view(s)

46
Updated on Jan 24, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.