Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/153543
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWong, Grayson Dao Hweeen_US
dc.contributor.authorAng, Calvin Ching Ianen_US
dc.contributor.authorGan, Weiliangen_US
dc.contributor.authorLaw, Wai Cheungen_US
dc.contributor.authorXu, Zhanen_US
dc.contributor.authorXu, Fengen_US
dc.contributor.authorSeet, Chim Sengen_US
dc.contributor.authorLew, Wen Siangen_US
dc.date.accessioned2021-12-07T04:43:23Z-
dc.date.available2021-12-07T04:43:23Z-
dc.date.issued2021-
dc.identifier.citationWong, G. D. H., Ang, C. C. I., Gan, W., Law, W. C., Xu, Z., Xu, F., Seet, C. S. & Lew, W. S. (2021). Reversible strain-induced spin-orbit torque on flexible substrate. Applied Physics Letters, 119(4), 042402-. https://dx.doi.org/10.1063/5.0056995en_US
dc.identifier.issn0003-6951en_US
dc.identifier.urihttps://hdl.handle.net/10356/153543-
dc.description.abstractWe propose the use of mechanical strain and mild annealing to achieve reversible modulation of spin-orbit torque (SOT) and Gilbert damping parameter. X-ray diffraction results show that the residual spin-orbit torque enhancement and Gilbert damping reduction, due to the post-mechanical strain treatment, can be reset using mild annealing to alleviate the internal strain. The spin Hall efficiency of the heat- and strain-treated Pt/Co bilayer was characterized through spin-torque ferromagnetic resonance, and it was found that the device could switch between the strain enhanced SOT and the pristine state. The Gilbert damping parameter behaves inversely with the spin Hall efficiency, and therefore, strain can be used to easily tune the device switching current density by a factor of ∼2 from its pristine state. Furthermore, the resonance frequency of the Pt/Co bilayer could be tuned using purely mechanical strain, and from the endurance test, the Pt/Co device can be reversibly manipulated over 104 cycles demonstrating its robustness as a flexible device.en_US
dc.description.sponsorshipAgency for Science, Technology and Research (A*STAR)en_US
dc.description.sponsorshipEconomic Development Board (EDB)en_US
dc.language.isoenen_US
dc.relationNRF2015-IIP001-001en_US
dc.relationI1801E0030en_US
dc.relationRCA-17/284en_US
dc.relation.ispartofApplied Physics Lettersen_US
dc.rights© 2021 Author(s). All rights reserved. This paper was published by AIP Publishing in Applied Physics Letters and is made available with permission of Author(s).en_US
dc.subjectScience::Physicsen_US
dc.titleReversible strain-induced spin-orbit torque on flexible substrateen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1063/5.0056995-
dc.description.versionPublished versionen_US
dc.identifier.scopus2-s2.0-85111702750-
dc.identifier.issue4en_US
dc.identifier.volume119en_US
dc.identifier.spage042402en_US
dc.subject.keywordsSpin-Orbit Torqueen_US
dc.subject.keywordsFerromagnetic Resonanceen_US
dc.description.acknowledgementThis work was supported by an Industry-IHL Partnership Program (No. NRF2015-IIP001-001) and an EDB-IPP (Grant No. RCA-17/284). This work was also supported by the RIE2020 ASTAR AME IAF-ICP Grant No. I1801E0030.en_US
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
Reversible strain-induced spin–orbit torque onflexible substrate - 5.0056995.pdf9.27 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 50

3
Updated on Jul 10, 2024

Web of ScienceTM
Citations 50

2
Updated on Oct 22, 2023

Page view(s)

302
Updated on Jul 18, 2024

Download(s) 50

54
Updated on Jul 18, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.