Please use this identifier to cite or link to this item:
Title: High-density three-dimensional network of covalently linked nitric oxide donors to achieve antibacterial and antibiofilm surfaces
Authors: Wang, Liping
Hou, Zheng
Pranantyo, Dicky
Kang, En-Tang
Chan-Park, Mary B.
Keywords: Engineering::Chemical engineering::Polymers and polymer manufacture
Issue Date: 2021
Source: Wang, L., Hou, Z., Pranantyo, D., Kang, E. & Chan-Park, M. B. (2021). High-density three-dimensional network of covalently linked nitric oxide donors to achieve antibacterial and antibiofilm surfaces. ACS Applied Materials & Interfaces, 13(29), 33745-33755.
Project: MOE2018- T3-1-003
Journal: ACS Applied Materials & Interfaces 
Abstract: Bacterial colonization on biomedical devices often leads to biofilms that are recalcitrant to antibiotic treatment and the leading cause of hospital-acquired infections. We have invented a novel pretreatment chemistry for device surfaces to produce a high-density three-dimensional (3-D) network of covalently linked S-nitrosothiol (RSNO), which is a nitric oxide (NO) donor. Poly(polyethylene glycol-hydroxyl-terminated) (i.e., PPEG-OH) brushes were grafted from an ozone-pretreated polyurethane (PU) surface. The high-density hydroxyl groups on the dangling PPEG-OH brushes then underwent condensation with a mercapto-silane (i.e., MPS, mercaptopropyl trimethoxysilane) followed by S-nitrosylation to produce a 3-D network of NO-releasing RSNO to form the PU/PPEG-OH-MPS-NO coating. This 3-D coating produces NO flux of up to 7 nmol/(cm2 min), which is nearly 3 orders of magnitude higher than the picomole/(cm2 min) levels of other NO-releasing biomedical implants previously reported. The covalent immobilization of RSNO avoids donor leaching and reduces the risks of cytotoxicity arising from leachable RSNO. Our coated PU surfaces display good biocompatibility and exhibit excellent antibiofilm formation activity in vitro (up to 99.99%) against a broad spectrum of Gram-positive and Gram-negative bacteria. Further, the high-density RSNO achieves nearly 99% and 99.9% in vivo reduction of Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) in a murine subcutaneous implantation infection model. Our surface chemistry to create high NO payload without NO-donor leaching can be applied to many biomedical devices.
ISSN: 1944-8244
DOI: 10.1021/acsami.1c00340
Rights: This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see
Fulltext Permission: embargo_20220805
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

Files in This Item:
File Description SizeFormat 
Manuscript .docx-1.pdf
  Until 2022-08-05
main1.5 MBAdobe PDFUnder embargo until Aug 05, 2022
Supporting Information of cathter coating_WANG LIPING _V13.docx-1.pdf
  Until 2022-08-05
SI719.2 kBAdobe PDFUnder embargo until Aug 05, 2022

Page view(s)

Updated on May 25, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.