Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/153843
Title: | High-density three-dimensional network of covalently linked nitric oxide donors to achieve antibacterial and antibiofilm surfaces | Authors: | Wang, Liping Hou, Zheng Pranantyo, Dicky Kang, En-Tang Chan-Park, Mary B. |
Keywords: | Engineering::Chemical engineering::Polymers and polymer manufacture | Issue Date: | 2021 | Source: | Wang, L., Hou, Z., Pranantyo, D., Kang, E. & Chan-Park, M. B. (2021). High-density three-dimensional network of covalently linked nitric oxide donors to achieve antibacterial and antibiofilm surfaces. ACS Applied Materials & Interfaces, 13(29), 33745-33755. https://dx.doi.org/10.1021/acsami.1c00340 | Project: | MOE2018- T3-1-003 MOE2013-T3-1-002 NMRC/MOHIAFCAT2/003/2014 A1786a0032 |
Journal: | ACS Applied Materials & Interfaces | Abstract: | Bacterial colonization on biomedical devices often leads to biofilms that are recalcitrant to antibiotic treatment and the leading cause of hospital-acquired infections. We have invented a novel pretreatment chemistry for device surfaces to produce a high-density three-dimensional (3-D) network of covalently linked S-nitrosothiol (RSNO), which is a nitric oxide (NO) donor. Poly(polyethylene glycol-hydroxyl-terminated) (i.e., PPEG-OH) brushes were grafted from an ozone-pretreated polyurethane (PU) surface. The high-density hydroxyl groups on the dangling PPEG-OH brushes then underwent condensation with a mercapto-silane (i.e., MPS, mercaptopropyl trimethoxysilane) followed by S-nitrosylation to produce a 3-D network of NO-releasing RSNO to form the PU/PPEG-OH-MPS-NO coating. This 3-D coating produces NO flux of up to 7 nmol/(cm2 min), which is nearly 3 orders of magnitude higher than the picomole/(cm2 min) levels of other NO-releasing biomedical implants previously reported. The covalent immobilization of RSNO avoids donor leaching and reduces the risks of cytotoxicity arising from leachable RSNO. Our coated PU surfaces display good biocompatibility and exhibit excellent antibiofilm formation activity in vitro (up to 99.99%) against a broad spectrum of Gram-positive and Gram-negative bacteria. Further, the high-density RSNO achieves nearly 99% and 99.9% in vivo reduction of Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) in a murine subcutaneous implantation infection model. Our surface chemistry to create high NO payload without NO-donor leaching can be applied to many biomedical devices. | URI: | https://hdl.handle.net/10356/153843 | ISSN: | 1944-8244 | DOI: | 10.1021/acsami.1c00340 | Schools: | School of Chemical and Biomedical Engineering | Research Centres: | Centre for Antimicrobial Bioengineering | Rights: | This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Applied Materials & Interfaces, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acsami.1c00340 | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SCBE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Manuscript .docx-1.pdf | main | 1.5 MB | Adobe PDF | ![]() View/Open |
Supporting Information of cathter coating_WANG LIPING _V13.docx-1.pdf | SI | 719.2 kB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
20
15
Updated on Feb 13, 2025
Web of ScienceTM
Citations
20
13
Updated on Oct 27, 2023
Page view(s)
191
Updated on Feb 15, 2025
Download(s) 20
252
Updated on Feb 15, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.