Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/154119
Title: Towards robust inference against distribution shifts in computer vision
Authors: Tang, Kaihua
Keywords: Engineering::Computer science and engineering
Issue Date: 2021
Publisher: Nanyang Technological University
Source: Tang, K. (2021). Towards robust inference against distribution shifts in computer vision. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/154119
Abstract: After a decade of prosperity, the development of machine learning based on deep neural networks (DNNs) seems to reach a new turning point. A variety of tasks and fields have proved that recklessly feeding a massive volume of data and increasing the model capacity would no longer bring us a panacea for all the problems. The ubiquitous bias in the model structures, long-tailed distributions, and optimization strategies stops the DNN from learning the underlying causal mechanisms, resulting in the catastrophic drop of performances when facing distribution shift problems like rare spatial layouts, misalignment between source domains and targeted domains, or adversarial perturbations. To tackle these challenges and increase the robustness of DNNs for better generalization abilities, a line of research, including dynamic networks with attention architectures, long-tailed recognition, and adversarial robustness, have attracted significant attention in recent years. In this thesis, we systematically study the threats of model robustness against distribution shifts from three aspects: 1) network architectures, 2) long-tailed distributions, 3) adversarial perturbations. The latter two can also be interpreted as the explicit and implicit distribution shifts on patterns, respectively. To address these threats, we propose several algorithms that successfully increase the robustness of deep neural networks in a wide range of computer vision tasks, including image classification, object detection, instance segmentation, scene graph generation, and visual question answering.
URI: https://hdl.handle.net/10356/154119
DOI: 10.32657/10356/154119
Rights: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Theses

Files in This Item:
File Description SizeFormat 
NTU_Thesis_Towards_Robust_Inference_Against_Distribution_Shifts_in_Computer_Vision_Final.pdf12.19 MBAdobe PDFView/Open

Page view(s)

33
Updated on Jan 20, 2022

Download(s)

173
Updated on Jan 20, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.