Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/154215
Title: | Enhancing the electrochemical doping efficiency in diketopyrrolopyrrole-based polymer for organic electrochemical transistors | Authors: | Wu, Xihu Liu, Q. Surendran, Abhijith Bottle, S. E. Sonar, P. Leong, Wei Lin |
Keywords: | Engineering::Electrical and electronic engineering | Issue Date: | 2021 | Source: | Wu, X., Liu, Q., Surendran, A., Bottle, S. E., Sonar, P. & Leong, W. L. (2021). Enhancing the electrochemical doping efficiency in diketopyrrolopyrrole-based polymer for organic electrochemical transistors. Advanced Electronic Materials, 7(1), 2000701-. https://dx.doi.org/10.1002/aelm.202000701 | Project: | M4081866 018-T2-1-075 1801E0030 1784c019 |
Journal: | Advanced Electronic Materials | Abstract: | The increasing interest in organic electrochemical transistors (OECTs) for next-generation bioelectronic applications motivates the design of novel conjugated polymers with good electronic and ionic transport. Many conjugated polymers developed for organic field-effect transistors (OFETs) exhibit high charge carrier mobilities but they are not suitable for OECTs due to poor ion-uptake arising from the non polar alkyl chain substituted on the conjugated backbone. They are also sensitive to moisture, resulting in poor performance in aqueous electrolytes. Herein, the widely used conjugated building block diketopyrrolopyrrole (DPP) is used and functionalized it with polar triethylene glycol side chains (PTDPP-DT) to promote ion penetration. The electrical performance of PTDPP-DT based OECT in two types of aqueous electrolytes is studied and the electrochemical doping response is investivated. It is found that the tetrafluoroborate (BF4−) anion with large crystallographic radius allows high-efficiency electrochemical doping of the PTDPP-DT polymer, and thus gives rise to the high transconductance of 21.4 ± 4.8 mS with good device stability, where it maintained over 91 % of its doped-state drain current after over 500 cycles of pulse measurement. | URI: | https://hdl.handle.net/10356/154215 | ISSN: | 2199-160X | DOI: | 10.1002/aelm.202000701 | DOI (Related Dataset): | 10.21979/N9/MVAOOB | Rights: | © 2020 Wiley-VCH GmbH. All rights reserved. | Fulltext Permission: | none | Fulltext Availability: | No Fulltext |
Appears in Collections: | EEE Journal Articles |
SCOPUSTM
Citations
10
17
Updated on Apr 22, 2022
PublonsTM
Citations
20
14
Updated on Apr 17, 2022
Page view(s)
35
Updated on May 18, 2022
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.