Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/154500
Title: A two-phase evolutionary algorithm framework for multi-objective optimization
Authors: Jiang, S.
Chen, Zefeng
Keywords: Engineering::Computer science and engineering
Issue Date: 2021
Source: Jiang, S. & Chen, Z. (2021). A two-phase evolutionary algorithm framework for multi-objective optimization. Applied Intelligence, 51, 3952-3974. https://dx.doi.org/10.1007/s10489-020-01988-7
Journal: Applied Intelligence
Abstract: This paper proposes a two-phase evolutionary algorithm framework for solving multi-objective optimization problems (MOPs), which allows different users to flexibly handle MOPs with different existing algorithms. In the first phase, a specific multi-objective evolutionary algorithm (MOEA) with a smaller population size is adopted to fast obtain a population converging to the true Pareto front. Then, in the second phase, a simple environmental selection mechanism based on a measure function and a well-designed crowdedness function is used to promote the uniformity of population in the objective space. Based on the proposed framework, we form four instantiations by embedding four distinct MOEAs into the first phase of the proposed framework. In the experimental study, different experiments are conducted on a variety of well-known benchmark problems from 3 to 10 objectives, and experimental results demonstrate the effect of the proposed framework. Furthermore, compared with several state-of-the-art multi-objective evolutionary algorithms, the four instantiations of the proposed framework have better performance and can obtain well-distributed solution sets. In short, the proposed framework has the strong ability to promote the performance of existing algorithms.
URI: https://hdl.handle.net/10356/154500
ISSN: 0924-669X
DOI: 10.1007/s10489-020-01988-7
Rights: © 2020 Springer Science+Business Media, LLC, part of Springer Nature. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SCSE Journal Articles

Page view(s)

22
Updated on May 20, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.