Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/154538
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnees, Sheik Mohameden_US
dc.contributor.authorDasari, Aravinden_US
dc.date.accessioned2021-12-28T00:47:40Z-
dc.date.available2021-12-28T00:47:40Z-
dc.date.issued2021-
dc.identifier.citationAnees, S. M. & Dasari, A. (2021). Acrylic-based fire-retardant coatings for steel protection : employing the concept of in situ ceramization. Journal of Applied Polymer Science, 138(17), 50299-. https://dx.doi.org/10.1002/app.50299en_US
dc.identifier.issn0021-8995en_US
dc.identifier.urihttps://hdl.handle.net/10356/154538-
dc.description.abstractTraditional intumescent coatings are widely used as passive fire-protective coatings for steel structures as they are capable of expanding in the range of 20–50 times the original thickness thereby providing excellent insulation. However, the fragile nature of such residue and susceptibility to thermo-oxidation given their carbonaceous nature are key problematic issues. The concept of in situ ceramization is explored in this work as a means to form inorganic cohesive char with improved rigidity and thermo-oxidative stability. Coating samples were prepared by incorporating ammonium polyphosphate, talc, Mg(OH)2, and polydimethylsiloxane as additives into acrylic resin at different weight fractions. Thermal analysis and x-ray diffraction have confirmed the reactions between the additives to form various crystalline magnesium phosphate phases, and to a small extent, silicon phosphate, thereby ensuring the thermo-oxidative stability of the residue. This is reiterated by the fire performance tests (by exposing the coatings to a temperature profile in a furnace similar to ISO 834 fire curve). Despite the advantages of rigid char and its thermo-oxidative stability as a result of formation of inorganic phosphates, the lack of swelling has resulted in relatively poor insulation capabilities of the char, and subsequently, compromised the fire protection times (that are in the range of 45–55 min). However, pyrolysis flow combustion calorimeter results of the coatings are promising and have shown a significant drop of up to 70% in the peak of heat release rate values as compared to neat resin.en_US
dc.language.isoenen_US
dc.relationRCAs 16/277en_US
dc.relationRCAs 17/365en_US
dc.relation.ispartofJournal of Applied Polymer Scienceen_US
dc.rights© 2020 Wiley Periodicals LLC. All rights reserveden_US
dc.subjectEngineering::Materialsen_US
dc.titleAcrylic-based fire-retardant coatings for steel protection : employing the concept of in situ ceramizationen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.identifier.doi10.1002/app.50299-
dc.identifier.scopus2-s2.0-85096751354-
dc.identifier.issue17en_US
dc.identifier.volume138en_US
dc.identifier.spage50299en_US
dc.subject.keywordsCeramizationen_US
dc.subject.keywordsChar Rigidityen_US
dc.description.acknowledgementThis manuscript is based on research work supported by Jurong Town Corporation (JTC) through NTU-JTC I3C (RCAs 16/277 and 17/365).en_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:MSE Journal Articles

Page view(s)

30
Updated on Jul 2, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.