Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/154542
Title: Enhanced BiFeO₃/Bi₂Fe4O₉/H₂O₂ heterogeneous system for sulfamethoxazole decontamination : system optimization and degradation pathways
Authors: Hu, Zhong-Ting
Liu, Jia-Wei
Zhao, Jia
Ding, Yin
Jin, Ziyan
Chen, Jinghuan
Dai, Qizhou
Pan, Bingjun
Chen, Zhong
Chen, Jianmeng
Keywords: Engineering::Materials
Issue Date: 2020
Source: Hu, Z., Liu, J., Zhao, J., Ding, Y., Jin, Z., Chen, J., Dai, Q., Pan, B., Chen, Z. & Chen, J. (2020). Enhanced BiFeO₃/Bi₂Fe4O₉/H₂O₂ heterogeneous system for sulfamethoxazole decontamination : system optimization and degradation pathways. Journal of Colloid and Interface Science, 577, 54-65-65. https://dx.doi.org/10.1016/j.jcis.2020.05.043
Journal: Journal of Colloid and Interface Science
Abstract: Sulfonamides as the major antibiotic have become emerging contaminants worldwide in aquatic environments. Herein, a heterogeneous Fenton-like oxidation driven by a novel BF-PMCs bismuth ferrites reported firstly for efficient degradation of sulfamethoxazole (SMX) in which the possible degradation pathways are thoroughly analyzed through identifying some of key intermediates (i.e., C8H11N3O4S, C4H4NO2, etc.) using liquid chromatography-mass spectrum (LC-MS), monitoring organic acids (i.e., acetic acid, pyruvic acid) and inorganic anions (i.e., sulfate, nitrate) using ion chromatography (IC), and detecting radical species (i.e., HO) using both chemical quenchers and fluorescence technique, simultaneously. The optimal operations in BF-PMCs/H2O2 system for SMX degradation are recommended at the conditions of initial pH ~4.5, 1.5 mg L-1 [SMX], 70 mM [H2O2], and BF-PMCs loading of 0.2 g L-1. The degradation rates (kinetic value of kapp) for SMX, azoxystrobin, bisphenol A, and 2,4-dichlorophenol are 9.5 × 10-3, 13.6 × 10-3, 7.3 × 10-3, and 5.9 × 10-3 min-1, respectively. Meanwhile, the degradation rates in BF-PMCs/H2O2 system for SMX degradation are slightly slower in the presence of inorganic anions (e.g., Cl-, NO3-) and NOM (e.g., humic acid). Based on an overall consideration, the BF-PMCs/H2O2 system has great potential for degradation of emerging organic pollutants (EOPs) in natural water systems.
URI: https://hdl.handle.net/10356/154542
ISSN: 1095-7103
DOI: 10.1016/j.jcis.2020.05.043
Rights: © 2020 Published by Elsevier Inc
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 20

14
Updated on Dec 28, 2021

Page view(s)

18
Updated on May 18, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.