Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/154560
Full metadata record
DC FieldValueLanguage
dc.contributor.authorOueslati, Oumaimaen_US
dc.contributor.authorCambria, Eriken_US
dc.contributor.authorHajHmida, Moez Benen_US
dc.contributor.authorOunelli, Habiben_US
dc.date.accessioned2021-12-28T06:22:10Z-
dc.date.available2021-12-28T06:22:10Z-
dc.date.issued2020-
dc.identifier.citationOueslati, O., Cambria, E., HajHmida, M. B. & Ounelli, H. (2020). A review of sentiment analysis research in Arabic language. Future Generation Computer Systems, 112, 408-430. https://dx.doi.org/10.1016/j.future.2020.05.034en_US
dc.identifier.issn0167-739Xen_US
dc.identifier.urihttps://hdl.handle.net/10356/154560-
dc.description.abstractSentiment analysis is a task of natural language processing which has recently attracted increasing attention. However, sentiment analysis research has mainly been carried out for the English language. Although Arabic is ramping up as one of the most used languages on the Internet, only a few studies have focused on Arabic sentiment analysis so far. In this paper, we carry out an in-depth qualitative study of the most important research works in this context by presenting limits and strengths of existing approaches. In particular, we survey both approaches that leverage machine translation or transfer learning to adapt English resources to Arabic and approaches that stem directly from the Arabic language.en_US
dc.language.isoenen_US
dc.relation.ispartofFuture Generation Computer Systemsen_US
dc.rights© 2020 Elsevier B.V. All rights reserved.en_US
dc.subjectEngineering::Computer science and engineeringen_US
dc.titleA review of sentiment analysis research in Arabic languageen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Computer Science and Engineeringen_US
dc.identifier.doi10.1016/j.future.2020.05.034-
dc.identifier.scopus2-s2.0-85085729308-
dc.identifier.volume112en_US
dc.identifier.spage408en_US
dc.identifier.epage430en_US
dc.subject.keywordsArabic Sentiment Analysisen_US
dc.subject.keywordsArabic Sentiments Resourcesen_US
item.grantfulltextnone-
item.fulltextNo Fulltext-
Appears in Collections:SCSE Journal Articles

Page view(s)

34
Updated on Jul 2, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.