Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/154617
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKu, Cheng Yeawen_US
dc.contributor.authorWong, Kok Binen_US
dc.date.accessioned2021-12-29T06:17:11Z-
dc.date.available2021-12-29T06:17:11Z-
dc.date.issued2020-
dc.identifier.citationKu, C. Y. & Wong, K. B. (2020). Erdős-Ko-Rado theorems for set partitions with certain block size. Journal of Combinatorial Theory, Series A, 172, 105180-. https://dx.doi.org/10.1016/j.jcta.2019.105180en_US
dc.identifier.issn0097-3165en_US
dc.identifier.urihttps://hdl.handle.net/10356/154617-
dc.description.abstractIn this paper, we prove Erdős-Ko-Rado type results for (a) family of set partitions where the size of each block is a multiple of k; and (b) family of set partitions with minimum block size k.en_US
dc.language.isoenen_US
dc.relation.ispartofJournal of Combinatorial Theory, Series Aen_US
dc.rights© 2019 Elsevier Inc. All rights reserved.en_US
dc.subjectScience::Mathematicsen_US
dc.titleErdős-Ko-Rado theorems for set partitions with certain block sizeen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.contributor.departmentDivision of Mathematical Sciencesen_US
dc.identifier.doi10.1016/j.jcta.2019.105180-
dc.identifier.scopus2-s2.0-85076252552-
dc.identifier.volume172en_US
dc.identifier.spage105180en_US
dc.subject.keywordsT-Intersecting Familyen_US
dc.subject.keywordsErdős-Ko-Radoen_US
dc.description.acknowledgementThe author Kok Bin Wong was supported by the University of Malaya Research Grant GPF025B-2018.en_US
item.fulltextNo Fulltext-
item.grantfulltextnone-
Appears in Collections:SPMS Journal Articles

Page view(s)

26
Updated on May 20, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.