Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/155310
Title: Incorporating silica-coated graphene in bioceramic nanocomposites to simultaneously enhance mechanical and biological performance
Authors: Li, Zhong
Zhu, Wenyu
Bi, Shuguang
Li, Ruitao
Hu, Huanlong
Lin, Hang
Tuan, Rocky S.
Khor, Khiam Aik
Keywords: Engineering::Mechanical engineering
Issue Date: 2020
Source: Li, Z., Zhu, W., Bi, S., Li, R., Hu, H., Lin, H., Tuan, R. S. & Khor, K. A. (2020). Incorporating silica-coated graphene in bioceramic nanocomposites to simultaneously enhance mechanical and biological performance. Journal of Biomedical Materials Research Part A, 108(4), 1016-1027. https://dx.doi.org/10.1002/jbm.a.36880
Project: M4080160 
Journal: Journal of Biomedical Materials Research Part A 
Abstract: The applications of a variety of bioactive ceramics such as hydroxyapatite (HA) in orthopedics are limited by their insufficient mechanical properties, especially poor fracture toughness. Thus, further extending the clinical applications of these materials warrants the enhancement of their mechanical properties. Although the reinforcement of ceramics by 2D nanomaterials has been well recognized, integrated structural, mechanical, and functional considerations have been neglected in the design and synthesis of such composite materials. Herein, we report the first use of silica-coated reduced graphene oxide (S-rGO) hybrid nanosheets to create bioceramic-based composites with simultaneously enhanced mechanical and biological properties. In the representative HA-based bioceramic systems prepared by spark plasma sintering, S-rGO incorporation was found to be more effective for increasing the Young's modulus, hardness, and fracture toughness than the incorporation of uncoated reduced GO (rGO). Furthermore, when assessed with osteoblast-like MG-63 cells, such novel materials led to faster cell proliferation and higher cell viability and alkaline phosphatase activity than are generally observed with pure HA; additionally, cells demonstrate stronger affinity to S-rGO/HA than to rGO/HA composites. The S-rGO/bioceramic composites are therefore promising for applications in orthopedic tissue engineering, and this research provides valuable insights into the fabrication of silica-coated hybrid nanosheet-reinforced ceramics.
URI: https://hdl.handle.net/10356/155310
ISSN: 1549-3296
DOI: 10.1002/jbm.a.36880
Schools: School of Mechanical and Aerospace Engineering 
School of Materials Science and Engineering 
School of Civil and Environmental Engineering 
Rights: © 2020 Wiley Periodicals, Inc. All rights reserved.
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:CEE Journal Articles
MAE Journal Articles
MSE Journal Articles

SCOPUSTM   
Citations 20

9
Updated on Dec 3, 2023

Web of ScienceTM
Citations 20

7
Updated on Oct 29, 2023

Page view(s)

97
Updated on Dec 11, 2023

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.