Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/155573
Title: | ArSMART : an improved SMART NoC design supporting arbitrary-turn transmission | Authors: | Chen, Hui Chen, Peng Zhou, Jun Duong, Luan H. K. Liu, Weichen |
Keywords: | Engineering::Computer science and engineering | Issue Date: | 2021 | Source: | Chen, H., Chen, P., Zhou, J., Duong, L. H. K. & Liu, W. (2021). ArSMART : an improved SMART NoC design supporting arbitrary-turn transmission. IEEE Transactions On Computer-Aided Design of Integrated Circuits and Systems. https://dx.doi.org/10.1109/TCAD.2021.3091961 | Project: | MoE2019-T2-1-071 MoE2019-T1-001-072 M4082282 M4082087 |
Journal: | IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems | Abstract: | SMART NoC, which transmits unconflicted flits to distant processing elements (PEs) in one cycle through the express bypass, is a high-performance NoC design proposed recently. However, if contention occurs, flits with low priority would not only be buffered but also could not fully utilize bypass. Although there exist several routing algorithms that decrease contentions by rounding busy routers and links, they cannot be directly applicable to SMART since it lacks the support for arbitrary-turn (i.e. the number and direction of turns are free of constraints) routing. Thus, in this article, to minimize contentions and further utilize bypass, we propose an improved SMART NoC, called ArSMART, in which arbitrary-turn transmission is enabled. Specifically, ArSMART divides the whole NoC into multiple clusters where the route computation is conducted by the cluster controller and the data forwarding is performed by the bufferless reconfigurable router. Since the long-range transmission in SMART NoC needs to bypass the intermediate arbitration, to enable this feature, we directly configure the input and output ports connection rather than apply hop-by-hop table-based arbitration. To further explore the higher communication capabilities, effective adaptive routing algorithms that are compatible with ArSMART are proposed. The route computation overhead, one of the main concerns for adaptive routing algorithms, is hidden by our carefully designed control mechanism. Compared with the state-of-the-art SMART NoC, the experimental results demonstrate an average reduction of 40.7% in application schedule length and 29.7% in energy consumption. | URI: | https://hdl.handle.net/10356/155573 | ISSN: | 0278-0070 | DOI: | 10.1109/TCAD.2021.3091961 | DOI (Related Dataset): | 10.21979/N9/18DIB5 | Schools: | School of Computer Science and Engineering | Rights: | © 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: https://doi.org/10.1109/TCAD.2021.3091961. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SCSE Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Completed_TCAD_ArSMART__An_Improved_SMART_NoC_Design_Supporting_Arbitrary_Turn_Transmission.pdf | 3.17 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
20
11
Updated on May 7, 2025
Web of ScienceTM
Citations
50
4
Updated on Oct 24, 2023
Page view(s)
238
Updated on May 7, 2025
Download(s) 50
188
Updated on May 7, 2025
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.