Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/155948
Title: | Crash area estimation for ground risk of small unmanned aerial vehicles due to propulsion system failures | Authors: | Mohd Hasrizam Che Man Hu, Haoliang Low, Kin Huat |
Keywords: | Engineering::Aeronautical engineering::Aircraft motors and engines Engineering::Aeronautical engineering::Accidents and air safety |
Issue Date: | 2022 | Source: | Mohd Hasrizam Che Man, Hu, H. & Low, K. H. (2022). Crash area estimation for ground risk of small unmanned aerial vehicles due to propulsion system failures. AIAA SCITECH 2022 Forum, 2022-1506-. https://dx.doi.org/10.2514/6.2022-1506 | Abstract: | Drones or Unmanned Aerial Vehicles (UAVs) are expected to be used for different applications like parcel delivery, inspection, and aerial photography in the urban area. However, UAVs usually uses an electric system to power up the propulsion, communications, navigation, and flight control system, which means it is not as reliable as the manned aircraft system and may result in failure during operation and then crash to the ground. At present, there is almost no publication about the high-fidelity modeling used by UAVs to calculate the crash trajectory and point of crash. The experimental data for modeling and simulation verification of multi-rotor aircraft is limited. So far, crash trajectory prediction has been limited to point mass or ballistic methods, and these methods are usually only suitable for complete power failure and without any control system. This study intends to investigate the effects of different UAV failure modes on its crash trajectory and crash area compared to the ballistic model by using ADAMS and MATLAB co-simulation methods. Conclusions from the study show the crash trajectory, flight distance and impact speed of the UAV under four failure modes, which are quite different from the ballistic trajectory. The findings can potentially contribute to better risk assessment of the multi-rotor sUAV in the urban environment operation. | URI: | https://hdl.handle.net/10356/155948 | ISBN: | 9781624106316 | DOI: | 10.2514/6.2022-1506 | Rights: | © 2022 The American Institute of Aeronautics and Astronautics, Inc. All rights reserved. This paper was published in Proceedings of AIAA SCITECH 2022 Forum and is made available with permission of The American Institute of Aeronautics and Astronautics, Inc. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | ATMRI Conference Papers MAE Conference Papers |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Ground Risk Estimation AIAA Scitech 2022.pdf | Accepted Version | 926.99 kB | Adobe PDF | ![]() View/Open |
Page view(s)
45
Updated on Jul 1, 2022
Download(s)
3
Updated on Jul 1, 2022
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.