Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhang, Xuewenen_US
dc.contributor.authorWu, Lishuen_US
dc.contributor.authorYang, Weihuangen_US
dc.contributor.authorFeng, Shunen_US
dc.contributor.authorWang, Xuen_US
dc.contributor.authorZhang, Xingwangen_US
dc.contributor.authorShang, Jingzhien_US
dc.contributor.authorHuang, Weien_US
dc.contributor.authorYu, Tingen_US
dc.identifier.citationZhang, X., Wu, L., Yang, W., Feng, S., Wang, X., Zhang, X., Shang, J., Huang, W. & Yu, T. (2022). Localization of laterally confined modes in a 2D semiconductor microcavity. ACS Nano, 16(3), 4940-4946.
dc.description.abstractMonolayer semiconductor embedded planar microcavities are becoming a promising light-matter interacting system to uncover a wealth of photonic, excitonic, and polaritonic physics at the two-dimensional (2D) limit. In these 2D semiconductor microcavities employing the longitudinal Fabry-Perot resonance, major attention has been paid to the coupling of excitons with vertically confined cavity photons; by contrast, the lateral confinement effect on exciton-photon interactions is still elusive. Here we observe the localized distribution of laterally confined modes with discrete energies in a 2D semiconductor embedded microcavity. Monolayer tungsten disulfides with equilateral triangular geometries but varied edge lengths are selected as the active media incorporated into a dielectric planar microcavity. With the shortening of the edge length, photoluminescence mappings of active regions present spatially localized emission patterns, which are attributed to the presence of in-plane triangular waveguiding resonance caused by total internal reflection at the one-dimensional closed boundary between the monolayer semiconductor and its surrounding cavity material. Unlike the conventional quantum confinement effect of native excitons appearing at the nanometer scale, the mode emission at the active-medium center exhibits apparent size-dependent features at the micrometer scale due to the optical confinement effect correlated with its photonic nature. By reducing the area of active media, single-mode dominant emission is achieved together with its nondispersive energy and improved directionality. Our work highlights the crucial role of lateral mode control in monolayer semiconductor embedded planar microcavities and encourages the investigation of the quantum billiard problem in 2D semiconductors.en_US
dc.description.sponsorshipNational Research Foundation (NRF)en_US
dc.relation.ispartofACS Nanoen_US
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see
dc.subjectScience::Physics::Optics and lighten_US
dc.titleLocalization of laterally confined modes in a 2D semiconductor microcavityen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.description.versionSubmitted/Accepted versionen_US
dc.subject.keywords2D Semiconductoren_US
dc.description.acknowledgementWe thank the support of the National Natural Science Foundation of China under Grant No. 61904151, the Fundamental Research Funds for the Central Universities of China, the Natural Science Foundation of Shaanxi under Grant No. 2020JM-108, and the Joint Research Funds of the Department of Science & Technology of Shaanxi Province and Northwestern Polytechnical University (No. 2020GXLHZ-020), the Singapore National Research Foundation (NRF) under the Competitive Research Programs (NRF-CRP-21- 2018-0007), the Natural Science Foundation of Jiangsu Province (BM2012010), Priority Academic Program Development of Jiangsu Higher Education Institutions (YX03001), Ministry of Education of China (IRT1148), Synergetic Innovation Center for Organic Electronics and Information Displays (61136003), the National Natural Science Foundation of China (51173081), and Fundamental Studies of Perovskite Solar Cells (2015CB932200). X.Z. thanks the support of National Natural Science Foundation of China (Grant No. 12174422) and Suzhou Municipal Science & Technology Bureau (Grant Nos. ZXL2022380, SJC2021005). S.F. is supported by H2020-MSCA-IF-2020 SingExTr project No. 101031596.en_US
item.fulltextWith Fulltext-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
Localization of Laterally Confined Modes in a 2D- Semiconductor Microcavity.pdf
  Until 2023-03-29
4.4 MBAdobe PDFUnder embargo until Mar 29, 2023

Page view(s)

Updated on Jul 5, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.