Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYong, Sidney Kwong Roongen_US
dc.identifier.citationYong, S. K. R. (2022). Atomic layer deposition of metallic tri-layer for alloy formation. Final Year Project (FYP), Nanyang Technological University, Singapore.
dc.description.abstractResearch has brought about great interest in the field of thin films and its applications. With the need for increasingly smaller devices, there is an increasing demand for synthesis methods to control and precisely fabricate components and materials. Atomic layer deposition (ALD) has become a topic of interest owing to its high compositional control, down to the atomic level. The technique allows for high quality production of films with good uniformity, and linearity of thickness control based on the number of deposition cycles. In this paper, we studied the deposition of metallic tri-layer consisting of Platinum (Pt), Iridium (Ir), and Palladium (Pd), which was synthesized using ALD. The metal layers were deposited on Sapphire (Al2O3) with ozone as a reactive agent. The process was shown to be promising in producing thin films with precise composition, thickness control, and uniformity, which was proven with characterization techniques such as X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Energy dispersive X-ray (EDX). After achieving a successful tri-metallic layer deposition, the substrate and deposited layers are put through the alloying process of carbothermal shock (CTS). This work provides novel insights to the synthesis of tri-metallic alloys through the combination of atomic layer deposition (ALD) and Carbothermal shock (CTS) alloying, opening possibilities for the furthered research of high entropy alloys synthesis methods.en_US
dc.publisherNanyang Technological Universityen_US
dc.titleAtomic layer deposition of metallic tri-layer for alloy formationen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorAlfred Tok Iing Yoongen_US
dc.contributor.schoolSchool of Materials Science and Engineeringen_US
dc.description.degreeBachelor of Engineering (Materials Engineering)en_US
item.fulltextWith Fulltext-
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
Atomic Layer Deposition FYP Sidney Yong.pdf
  Restricted Access
1.87 MBAdobe PDFView/Open

Page view(s)

Updated on Dec 8, 2023


Updated on Dec 8, 2023

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.