Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/156200
Title: Domain wall pinning through nanoscale interfacial Dzyaloshinskii-Moriya interaction
Authors: Kumar, Durgesh
Chan, Jianpeng
Piramanayagam, S. N.
Keywords: Science::Physics
Issue Date: 2021
Source: Kumar, D., Chan, J. & Piramanayagam, S. N. (2021). Domain wall pinning through nanoscale interfacial Dzyaloshinskii-Moriya interaction. Journal of Applied Physics, 130(21), 213901-. https://dx.doi.org/10.1063/5.0070773
Project: NRF-CRP21-2018-003
Journal: Journal of Applied Physics
Abstract: Neuromorphic computing (NC) has been gaining attention as a potential candidate for artificial intelligence. The building blocks for NC are neurons and synapses. Research studies have indicated that domain wall (DW) devices are one of the most energy-efficient contenders for realizing NC. Moreover, synaptic functions can be achieved by obtaining multi-resistance states in DW devices. However, in DW devices with no artificial pinning, it is difficult to control the DW position, and hence achieving multilevel resistance is difficult. Here, we have proposed the concept of nanoscale interfacial Dzyaloshinskii-Moriya interaction (iDMI) for controllably stopping the DWs at specific positions, and hence, realizing multi-resistance states. We show that the nanoscale iDMI forms an energy barrier (well), which can controllably pin the DWs at the pinning sites. Moreover, a tunable depinning current density was achieved by changing the width and iDMI constant of the confinement region. We have also studied pinning in a device with five successive pinning sites. This feature is a proof-of-concept for realizing multi-resistance states in the proposed concept. Based on these observations, a magnetic tunnel junction - where the free layer is made up of the proposed concept - can be fabricated to achieve synapses for NC applications.
URI: https://hdl.handle.net/10356/156200
ISSN: 0021-8979
DOI: 10.1063/5.0070773
Rights: © 2021 Author(s). All rights reserved. This paper was published in Journal of Applied Physics and is made available with permission of Author(s).
Fulltext Permission: embargo_20221210
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
DW Pinning Durgesh.pdf
  Until 2022-12-10
2.42 MBAdobe PDFUnder embargo until Dec 10, 2022

Page view(s)

45
Updated on Jul 2, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.