Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/156322
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLuo, Gaojunen_US
dc.contributor.authorLing, Sanen_US
dc.date.accessioned2022-04-16T08:28:41Z-
dc.date.available2022-04-16T08:28:41Z-
dc.date.issued2022-
dc.identifier.citationLuo, G. & Ling, S. (2022). Application of optimal p-ary linear codes to alphabet-optimal locally repairable codes. Designs, Codes and Cryptography. https://dx.doi.org/10.1007/s10623-022-01040-4en_US
dc.identifier.issn0925-1022en_US
dc.identifier.urihttps://hdl.handle.net/10356/156322-
dc.description.abstractLinear codes have widespread applications in data storage systems. There are two major contributions in this paper. We first propose infinite families of optimal or distance-optimal linear codes over Fp constructed from projective spaces.Moreover, a necessary and sufficient condition for such linear codes to be Griesmer codes is presented. Secondly, as an application in data storage systems, we investigate the locality of the linear codes constructed. Furthermore, we show that these linear codes are alphabet-optimal locally repairable codes with locality 2.en_US
dc.description.sponsorshipNanyang Technological Universityen_US
dc.language.isoenen_US
dc.relation04INS000047C230GRT01en_US
dc.relation.ispartofDesigns, Codes and Cryptographyen_US
dc.rights© 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature. This is a post-peer-review, pre-copyedit version of an article published in Designs, Codes and Cryptography. The final authenticated version is available online at: http://dx.doi.org/10.1007/s10623-022-01040-4,en_US
dc.subjectScience::Mathematicsen_US
dc.titleApplication of optimal p-ary linear codes to alphabet-optimal locally repairable codesen_US
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen_US
dc.identifier.doi10.1007/s10623-022-01040-4-
dc.description.versionSubmitted/Accepted versionen_US
dc.subject.keywordsLinear Codeen_US
dc.subject.keywordsGriesmer Codeen_US
dc.description.acknowledgementThis work was supported by NTU Research Grant 04INS000047C230GRT01.en_US
item.fulltextWith Fulltext-
item.grantfulltextembargo_20230416-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
optmiallrc.pdf
  Until 2023-04-16
478.96 kBAdobe PDFUnder embargo until Apr 16, 2023

Page view(s)

24
Updated on Jul 4, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.