Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/156357
Title: Screening and characterization of antimalarial resistance related genetic structural variations in P. falciparum
Authors: Assisi, Christina
Keywords: Science::Biological sciences::Genetics
Science::Biological sciences::Molecular biology
Science::Biological sciences::Microbiology::Drug Resistance
Issue Date: 2021
Publisher: Nanyang Technological University
Source: Assisi, C. (2021). Screening and characterization of antimalarial resistance related genetic structural variations in P. falciparum. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156357
Abstract: The emergence of parasite resistance to antimalarials has been impeding the efforts in malaria elimination. Continuous surveillance of treatment failures from the clinical population informs the efficacy of the currently used antimalarial treatment and provide essential clues in deciphering the molecular mechanism of resistance. Screening of resistance biomarkers from clinical isolates has undermined the identification of large genetic variants, mainly due to technical challenges imposed by low quantity of genetic material and low complexity Plasmodium genome, making the analysis prone to bias. This study screened large genetic structural variations from 413 clinical samples collected in Greater Mekong Subregions, the epicentre of antimalarial treatment failures. Samples were obtained in collaboration with Tracking Resistance to Artemisinin Collaboration (TRAC) studies. Large structural variants were screened using an optimized microarray based Comparative Genomic Hybridization (aCGH) technique. We identified Copy Number Amplification in pfmdr1, pfgch1, and pfpm2, previously reported in association with mainly Mefloquine, Sulfadoxine-Pyrimethamine, and Piperaquine resistance, respectively. In addition, we also identified novel CNV in pfvit and pfyhm2 within the same locus, known for function in iron detoxification and mitochondrial electron transport chain, respectively. Four variant genes: pfpm2, pfvit, pfcyp19b, and pfk13, were chosen for biological and phenotypical characterization using an in vitro parasite model. The overall work suggested the CYP19B as a potential downstream effector of K13 C580Y allele as well as PMII and K13 probable compensatory/synergistic relationship in Ring stage; the stage had been shown to exhibit reduced susceptibility to Artemisinin treatment. Collectively, this work presented an additional potential molecular mechanism to the current notion of antimalarial resistance.
URI: https://hdl.handle.net/10356/156357
DOI: 10.32657/10356/156357
Rights: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SBS Theses

Files in This Item:
File Description SizeFormat 
Christina Assisi (G1602975A).pdfPhD Dissertation15.55 MBAdobe PDFView/Open

Page view(s)

34
Updated on May 20, 2022

Download(s)

10
Updated on May 20, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.