Please use this identifier to cite or link to this item:
Title: Support vector fuzzy parallel embedded system
Authors: Book, Jeremy Kay Yip
Keywords: Engineering::Computer science and engineering
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Book, J. K. Y. (2022). Support vector fuzzy parallel embedded system. Final Year Project (FYP), Nanyang Technological University, Singapore.
Project: SCSE21-0431
Abstract: There are many problems faced by fund managers in managing a portfolio. The common problems consist of not knowing how to allocate assets, which stocks to include, and how to rebalance assets in the portfolio. Most portfolios today are managed by active fund managers. The issue with active portfolio management by an active fund manager is often plagued by limitations and shortcomings, such as limited processing capabilities of the human brain and the presence of cognitive biases such as overconfidence that can be developed over time due to previous successes. Artificial intelligence (AI) and Machine learning (ML) have been adopted by fund managers to assist with their active portfolio management process [1]. The predictive ability of AI and ML can provide fund managers with forecasted information in the stock market, allowing them to make early informed decisions for upside potential profits. However, AI and ML lack interpretability regarding how their outputs are derived and thus function as black boxes [3]. The black box nature of AI and ML makes it seem unreliable and uncertain. Without a proper explanation of the predicted output, humans tend to feel sceptical and doubtful. Hence it is desirable to have an architecture that has predictive ability and provides interpretations. This paper proposes and illustrates an architecture, Support Vector Fuzzy Parallel Embedded System (SVFPS) by incorporating a fuzzy system embedded with machine learning. The proposed architecture functions as a predictive model with an ability to form highly intuitive IF-THEN fuzzy rules to provide linguistic insights of how outputs are derived. The effectiveness of the proposed architecture, Support Vector Fuzzy Parallel Embedded System (SVFPS) is evaluated by incorporating SVFPS into a portfolio management system with several sector Exchange-Traded Funds (ETFs). The experimental results showed that the portfolio management incorporated with the proposed SVFPS has outperformed benchmarks of commonly used investing strategies.
Schools: School of Computer Science and Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
4.2 MBAdobe PDFView/Open

Page view(s)

Updated on Oct 2, 2023


Updated on Oct 2, 2023

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.