Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/156572
Title: | GDCEngine: an end-to-end machine learning engine for green data center control optimization with digital twins | Authors: | Zhang, Xinyi | Keywords: | Engineering::Computer science and engineering::Computer applications Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence |
Issue Date: | 2022 | Publisher: | Nanyang Technological University | Source: | Zhang, X. (2022). GDCEngine: an end-to-end machine learning engine for green data center control optimization with digital twins. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156572 | Project: | SCSE21-0267 | Abstract: | The ever-increasing scales and power consumption of data centers (DCs) have brought challenges that aim to minimize energy costs while avoiding operational risk. Current industry practice mainly relies on the data centre infrastructure management (DCIM) system and requires extensive human expertise, which is difficult to scale with the growing DC complexity. To advance DC management, we propose GDCEngine, an end-to-end green data center (GDC) AI engine that facilities the development and applications of machine learning (ML) approaches for DC optimizations. In GDCEngine, we develop three major components to support the training and evaluation of ML-based policies for different user groups. First, we develop the GDCSimulator module that integrates multiphysics digital twin simulation for evaluating ML-based policies without risking the physical system. Second, we develop the GDCPolicy module that incorporates advanced deep reinforcement learning algorithms for DC cooling control optimizations. Third, we design a no-code web interface to facilitate the usage of DC operators without intensive prior knowledge in ML. We use a case study to demonstrate the developed engine in optimizing a chilled water cooling DC based on our proposed Safari algorithms. The experimental evaluation shows that GDCEngine helps save 26% total power consumption compared with a conventional controller, and dramatically reduces thermal safety violations during the online learning stage. GDCEngine is a firm step towards transforming GDC ML research and application. | URI: | https://hdl.handle.net/10356/156572 | Schools: | School of Computer Science and Engineering | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | SCSE Student Reports (FYP/IA/PA/PI) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
NTU_FYP_Report_Zhang_Xinyi.pdf Restricted Access | 3.56 MB | Adobe PDF | View/Open |
Page view(s)
105
Updated on Nov 28, 2023
Download(s)
10
Updated on Nov 28, 2023
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.