Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/156633
Title: | Sequential recommendation for canteen food recommendations in NTU | Authors: | Nguyen, Tien Nhan | Keywords: | Engineering::Computer science and engineering::Computing methodologies::Artificial intelligence | Issue Date: | 2022 | Publisher: | Nanyang Technological University | Source: | Nguyen, T. N. (2022). Sequential recommendation for canteen food recommendations in NTU. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156633 | Project: | SCSE21-0531 | Abstract: | Recently, food recommendation has become more significant due to its potential to serve tremendous service demand and allow users to discover their preferred food items from a variety of choices. Nevertheless, to build an effective food recommender system, understanding the user’s dynamic food preference is a prerequisite. In this project, our aim is to apply sequential recommendation (SR) to model such evolving preference in user behaviours. We attempted to evaluate multiple attention-based SR models and apply transfer learning techniques to further improve the models’ performance. A canteen food review dataset is introduced comprising food stall reviews crawled from the NTU Food Hunter system. Four attention-based SR models, consisting of SASRec, TiSASRec, BERT4Rec, and STOSA models are evaluated on the Food Hunter dataset and other benchmark datasets. The objective of the SR model is to predict the next item based on the user’s past behaviour sequence. In addition, we compare Collaborative Filtering (CF) versus attention-based SR methods on a benchmark dataset and find that SR methods outperform CF methods in predicting the user’s following item. Because the Food Hunter dataset is relatively small, we use transfer learning techniques by pre-training the SR models on a larger food domain dataset named Amazon Food. The results show that transfer learning can significantly improve some models' performance on the Food Hunter dataset. | URI: | https://hdl.handle.net/10356/156633 | Schools: | School of Computer Science and Engineering | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | SCSE Student Reports (FYP/IA/PA/PI) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
NGUYEN TIEN NHAN FYP REPORT.pdf Restricted Access | 1.26 MB | Adobe PDF | View/Open |
Page view(s)
144
Updated on Dec 10, 2023
Download(s)
13
Updated on Dec 10, 2023
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.