Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/156728
Title: Unearthing in-situ nutrient uptake rates: an assessment of underlying assumptions used for their prediction
Authors: Ng, Jing Cheng
Keywords: Science::Biological sciences::Ecology
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Ng, J. C. (2022). Unearthing in-situ nutrient uptake rates: an assessment of underlying assumptions used for their prediction. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156728
Abstract: Plant nutrient acquisition is a functional trait that has widespread importance ranging from individual growth to ecosystem productivity and processes. Trait-based approaches seek to make general predictions about ecosystem functioning based on functional traits. However. these rest on the assumptions that measured traits impact fitness, and can be predicted by environmental parameters. In-situ nutrient uptake rates were measured for Campnosperma auriculatum and Shorea curtisii for NO3-N, NH3-N and PO4-P uptake. Plasticity was detected in PO4-P and NO3-N nutrient uptake rates based on the test medium. NH3-N uptake rates displayed species-specific differences in plasticity. Root nutrient uptake rates should thus be reported alongside concentrations of nutrient media used to allow for fair trait comparison across studies. Uptake rates of all nutrients are all positively correlated with one another, with no preferential uptake across PO4-P and NO3-N. All nutrient uptake rates were not significantly correlated with root carbon exudation rates. NH3, NO3, and PO4 nutrient uptake rates do not reflect plant-available soil nutrient gradients, and may thus not be predictable across geographical scales. Additionally, nutrient uptake rates are orthogonal to both the collaboration and conservation gradients described by root morphological traits in the root economic space. This orthogonality challenges the assumption that widely measured "soft", morphological traits are accurate surrogates of "hard" functional traits.
URI: https://hdl.handle.net/10356/156728
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:ASE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
final_year_project_report_jing_cheng.pdf
  Restricted Access
1.09 MBAdobe PDFView/Open

Page view(s)

23
Updated on May 15, 2022

Download(s)

1
Updated on May 15, 2022

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.