Please use this identifier to cite or link to this item:
Title: Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals
Authors: Liu, Lin
Tobing, Landobasa Yosef Mario
Wu, Tingting
Qiang, Bo
Garcia-Vidal, Francisco J.
Zhang, Dao Hua
Wang, Qi Jie
Luo, Yu
Keywords: Engineering::Materials::Photonics and optoelectronics materials
Science::Physics::Optics and light
Engineering::Electrical and electronic engineering::Optics, optoelectronics, photonics
Issue Date: 2021
Source: Liu, L., Tobing, L. Y. M., Wu, T., Qiang, B., Garcia-Vidal, F. J., Zhang, D. H., Wang, Q. J. & Luo, Y. (2021). Plasmon-induced thermal tuning of few-exciton strong coupling in 2D atomic crystals. Optica, 8(11), 1416-1423.
Project: MOE2018-T2-1-176
Journal: Optica
Abstract: Strong light–matter interaction in 2D materials at the few-exciton level is important for both fundamental studies and quantum optical applications. Characterized by a fast coherent energy exchange between photons and excitons, strongly coupled plasmon–exciton systems in 2D materials have been reported with large Rabi splitting. However, large Rabi splitting at the few-exciton level generally requires large optical fields in a highly confined mode volume, which are difficult to achieve for in-plane excitons in 2D materials. In this work, we present a study of a strongly coupled gold dimer antenna with a sub-10 nm gap on a monolayer tungsten disulphide (WS2), with an estimated number of excitons of 4.67 ± 0.99. We demonstrate that varying the spatial mode overlap between the plasmonic field and the 2D material can result in up to a ∼tenfold increase in the number of excitons, a value that can be further actively tuned via plasmon-induced heating effects. The demonstrated results would represent a key step toward quantum optical applications operating at room temperatures.
ISSN: 2334-2536
DOI: 10.1364/OPTICA.436140
Rights: © 2021 Optica Publishing Group under the terms of the Open Access Publishing Agreement. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for noncommercial purposes and appropriate attribution is maintained. All other rights are reserved.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Files in This Item:
File Description SizeFormat 
optica-8-11-1416.pdf5.02 MBAdobe PDFView/Open

Page view(s)

Updated on May 15, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.