Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/156920
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aravinth, Krishnan Ravi | en_US |
dc.date.accessioned | 2022-04-27T08:37:41Z | - |
dc.date.available | 2022-04-27T08:37:41Z | - |
dc.date.issued | 2022 | - |
dc.identifier.citation | Aravinth, K. R. (2022). A conjecture for the eigenvalues of pseudo-Anosov mappings of surfaces. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/156920 | en_US |
dc.identifier.uri | https://hdl.handle.net/10356/156920 | - |
dc.description.abstract | In Geometric Topology, there is a conjectured relation between the supremum of the set containing virtual homological spectral radius of finite type covers of a surface and the hyperbolic volume of the mapping torus with respect to a pseduo-Anosov mapping class. In this thesis, I will create a program to test this bound for the once-punctured torus. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Nanyang Technological University | en_US |
dc.subject | Science::Mathematics::Topology | en_US |
dc.title | A conjecture for the eigenvalues of pseudo-Anosov mappings of surfaces | en_US |
dc.type | Final Year Project (FYP) | en_US |
dc.contributor.supervisor | Andrew James Kricker | en_US |
dc.contributor.school | School of Physical and Mathematical Sciences | en_US |
dc.description.degree | Bachelor of Science in Mathematical Sciences | en_US |
dc.contributor.supervisoremail | AJKricker@ntu.edu.sg | en_US |
item.grantfulltext | restricted | - |
item.fulltext | With Fulltext | - |
Appears in Collections: | SPMS Student Reports (FYP/IA/PA/PI) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
U1840271K_Final_FYP.pdf Restricted Access | 4.23 MB | Adobe PDF | View/Open |
Page view(s)
50
Updated on Jun 21, 2022
Download(s)
12
Updated on Jun 21, 2022
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.