Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/156961
Title: | Observation of a linked-loop quantum state in a topological magnet | Authors: | Belopolski, Ilya Chang, Guoqing Cochran, Tyler A. Cheng, Zi-Jia Yang, Xian P. Hugelmeyer, Cole Manna, Kaustuv Yin, Jia-Xin Cheng, Guangming Multer, Daniel Litskevich, Maksim Shumiya, Nana Zhang, Songtian S. Shekha, Chandra Schröter, Niels B. M. Chikina, Alla Polley, Craig Thiagarajan, Balasubramanian Leandersson, Mats Adell, Johan Huang, Shin-Ming Yao, Nan Strocov, Vladimir N. Felser, Claudia Hasan, M. Zahid |
Keywords: | Science::Physics | Issue Date: | 2022 | Source: | Belopolski, I., Chang, G., Cochran, T. A., Cheng, Z., Yang, X. P., Hugelmeyer, C., Manna, K., Yin, J., Cheng, G., Multer, D., Litskevich, M., Shumiya, N., Zhang, S. S., Shekha, C., Schröter, N. B. M., Chikina, A., Polley, C., Thiagarajan, B., Leandersson, M., ...Hasan, M. Z. (2022). Observation of a linked-loop quantum state in a topological magnet. Nature, 604, 647-652. https://dx.doi.org/10.1038/s41586-022-04512-8 | Project: | NRF-NRFF13-2021-0010 | Journal: | Nature | Abstract: | Quantum phases can be classified by topological invariants, which take on discrete values capturing global information about the quantum state. Over the past decades, these invariants have come to play a central role in describing matter, providing the foundation for understanding superfluids, magnets, the quantum Hall effect, topological insulators, Weyl semimetals and other phenomena. Here we report an unusual linking-number (knot theory) invariant associated with loops of electronic band crossings in a mirror-symmetric ferromagnet. Using state-of-the-art spectroscopic methods, we directly observe three intertwined degeneracy loops in the material’s three-torus, T3, bulk Brillouin zone. We find that each loop links each other loop twice. Through systematic spectroscopic investigation of this linked-loop quantum state, we explicitly draw its link diagram and conclude, in analogy with knot theory, that it exhibits the linking number (2, 2, 2), providing a direct determination of the invariant structure from the experimental data. We further predict and observe, on the surface of our samples, Seifert boundary states protected by the bulk linked loops, suggestive of a remarkable Seifert bulk–boundary correspondence. Our observation of a quantum loop link motivates the application of knot theory to the exploration of magnetic and superconducting quantum matter. | URI: | https://hdl.handle.net/10356/156961 | ISSN: | 0028-0836 | DOI: | 10.1038/s41586-022-04512-8 | Rights: | © 2022 The Author(s), under exclusive licence to Springer Nature Limited. All rights reserved. This paper was published in Nature and is made available with permission of The Author(s). | Fulltext Permission: | embargo_20221105 | Fulltext Availability: | With Fulltext |
Appears in Collections: | SPMS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2112.14722.pdf Until 2022-11-05 | accepted version | 9.5 MB | Adobe PDF | Under embargo until Nov 05, 2022 |
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.