Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/157150
Title: A multi-sensor fusion framework for autonomous robots localization in repetitive environments
Authors: Wu, Zhenyu
Keywords: Engineering::Electrical and electronic engineering
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Wu, Z. (2022). A multi-sensor fusion framework for autonomous robots localization in repetitive environments. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/157150
Abstract: It is generally recognized that the widely utilized Global Navigation Satellite System (GNSS) signals may be severely challenged or even unavailable in enclosed or partially enclosed repetitive and ambiguous environments (e.g., offices, hotels, hospitals, airports, industrial warehouses, container seaports). With the surge of autonomous robots applications, a robust localization algorithm that is capable to accurately localize the robots within such challenging environments is a critical pre-requisite to enable functionalities such as mapping, navigation, intelligent services, and collaborative works. Current localization solutions in such environments can be classified into two main categories: infrastructure-based and infrastructure-free. For infrastructure-based solutions (e.g., Wi-Fi based, UWB based, RFID based, etc.), the costs for deploying and maintaining the infrastructures can be high, which is also neither scalable nor flexible. As for infrastructure-free localization, many of the approaches only rely on a single-modal sensor, such as Light Detection and Ranging (LiDAR), camera, or magnetometer. Moreover, methods such as simultaneous localization and mapping (SLAM) have much lower cost and can be easily adapted to almost any environment. Normally, SLAM-based approaches work well in ordinary environments with rich geometric features. However, aforementioned repetitive environments contain lots of similar and ambiguous settings with few distinct geometric features, thus making SLAM-based methods inaccurate or even fail. Over the past few years, the ambient magnetic field (MF) based positioning and localization algorithms have drawn significant attention. The MF has exhibited high distinctiveness and ubiquity at different location, which makes it a viable alternative to the GNSS signal for localization in the local environments. To take the aforementioned challenges and the advantages of MF into account, this thesis proposes a systematic multi-sensor fusion probabilistic localization framework for autonomous robots operating in repetitive environments.
URI: https://hdl.handle.net/10356/157150
DOI: 10.32657/10356/157150
Schools: School of Electrical and Electronic Engineering 
Rights: This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
PhD_Thesis_Wu_Zhenyu_Final.pdf12.86 MBAdobe PDFThumbnail
View/Open

Page view(s)

329
Updated on Jun 21, 2024

Download(s)

12
Updated on Jun 21, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.