Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/157423
Title: Design and engineer a domestic use vertical farming unit for high rise homes
Authors: Ng, Yu Jie
Keywords: Engineering::Aeronautical engineering
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Ng, Y. J. (2022). Design and engineer a domestic use vertical farming unit for high rise homes. Final Year Project (FYP), Nanyang Technological University, Singapore. https://hdl.handle.net/10356/157423
Abstract: It is a commonly known fact that Singapore does not have a lot of land or area to produce its own crop. The few local food production brands are insufficient in providing for the entire population, leading to the nation’s reliance on food imports from other countries at high prices. However, since the reliance on food supplies from other countries to feed the nation is not a sustainable solution in the long run, Singapore started its own campaign called the “30 by 30” vision that aims to grow 30% of the country’s nutritional needs by 2030. As part of the efforts to achieve “30 by 30”, the aim of this project is to design and assemble a domestic-use indoor vertical farming unit, to increase Singaporeans’ involvement in growing food locally and integrate technology in the indoor farming units. The first part of the project consisted of building the said unit, using the Deep Flow Technique (DFT) and Nutrient Film Technique (NFT). An analysis was also conducted to investigate the efficiency and resource consumption of the setup. The second part of the project was to design and set up of an Internet of Things (IoT) system that automated the process of nutrient solution pH calibration, and wirelessly sent real-time data of the nutrient solution pH, along with ambient temperature and humidity, to remote users using Wi-Fi communication.
URI: https://hdl.handle.net/10356/157423
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Ng Yu Jie U1820406J FYP.pdf
  Restricted Access
Main Report8.1 MBAdobe PDFView/Open

Page view(s)

26
Updated on Jun 27, 2022

Download(s)

4
Updated on Jun 27, 2022

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.