Please use this identifier to cite or link to this item:
Title: Application of hash functions to enhance security of fast frequency hopped systems
Authors: Beak, Alvin Kang Qi
Keywords: Engineering::Electrical and electronic engineering::Wireless communication systems
Issue Date: 2022
Publisher: Nanyang Technological University
Source: Beak, A. K. Q. (2022). Application of hash functions to enhance security of fast frequency hopped systems. Final Year Project (FYP), Nanyang Technological University, Singapore.
Abstract: With the widespread adoption of the Internet and digitalization during the Digital Era, security of wireless communications and data transmission integrity is of utmost importance. In frequency-hopped spread spectrum, the accessible channel bandwidth is divided into multiple nonoverlapping frequency slots where one or more of the available frequency slots is used to transmit the signal. At each frequency interval, the selection of frequency slots is generated by the pseudonoise (PN) sequence. The project aims to utilize hash functions to generate a more secure hopping pattern, using the properties of the hash function. The output of the PN sequence will be hashed and the resulting output will be used to select the frequency slots. 10% of the frequency bandwidth was jammed with partial-band noise jamming to test the performance of the hash function model. The results are compared against a control, a 4-stage linear feedback shift register (LFSR) to analyze the jamming probabilities with hash functions implemented. Although the jamming probabilities are constant at approximately 10% with hash functions implemented, it can be inferred that hash functions do not have adverse effects on the jamming probabilities. Hence, with the application of hash functions, it will be more difficult to decrypt the PN sequence due to its one-way property and to predict the future hopping pattern from previous patterns.
Schools: School of Electrical and Electronic Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Final Report.pdf
  Restricted Access
1.03 MBAdobe PDFView/Open

Page view(s)

Updated on Feb 20, 2024


Updated on Feb 20, 2024

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.